

A-96.250.870 / 130623

Betriebsanleitung

Kundenbetreuung

Swan unterhält rund um die Welt ein dichtes Vertreternetz mit ausgebildeten Fachkräften. Kontaktieren Sie für technische Fragen die nächste Swan-Vertretung oder direkt den Hersteller:

Swan Analytische Instrumente AG Studbachstrasse 13 8340 Hinwil Schweiz

Internet: www.swan.ch E-Mail: support@swan.ch

Dokumentstatus

Titel:	Betriebsanleitung AMI CACE		
ID:	A-96.250.870		
Revision	Ausgabe	lusgabe	
00	Dezember 2016	Erstausgabe	
01	Oktober 2018	Verifizierungverfahren und Informationen zur Lebens- dauer und Lagerung des EDI-Moduls hinzugefügt	
02	Juni 2020	Mainboard V2.6	

© 2020, Swan Analytische Instrumente AG, Schweiz, alle Rechte vorbehalten.

Dieses Handbuch gilt für Firmware V6.22 und höher.

Die in diesem Dokument enthaltenen Informationen können ohne Ankündigung geändert werden.

Inhaltsverzeichnis

1. 1.1. 1.2. 1.3.	Sicherheitshinweise	5 6 8 9
2. 2.1. 2.2. 2.3.	Produktbeschreibung Beschreibung des Systems . Instrumentenspezifikationen Übersicht über das Instrument	10 10 14 16
 3.1. 3.2. 3.3. 3.3.1 3.3.2 	Installation Installations-Checkliste Die Instrumententafel montieren Die Probenein- und Auslassleitung anschliessen Swagelok-Edelstahlarmatur am Probeneinlass Schläuche am EDI-Modul	17 17 18 18 18 18
3.3.3 3.4. 3.4.1 3.4.2 3.5. 3.5.1 3.5.2 3.5.3 3.6. 3.6.1	Schlauch am Probenauslass	19 20 22 23 24 24 24 24 25 27 27
3.7. 3.7.1 3.7.2 3.7.3 3.7.4	Schnittstellenoptionen Signalausgang 3 Profibus-, Modbus-Schnittstelle HART-Schnittstelle USB-Schnittstelle	27 28 28 29 29
4. 4.1. 4.2.	Das Instrument einrichten Probenfluss öffnen Programmierung	30 30 30
5. 5.1. 5.2. 5.3. 5.4.	Betrieb	32 32 32 34 35

AMI CACE

6. 6.1. 6.2. 6.3. 6.3.1 6.3.2 6.4. 6.5. 6.5.1 6.6. 6.7.	Wartung. Wartungsplan Betriebsstopp zwecks Wartung Sensor warten Sensor aus der Durchflusszelle ausbauen Sensor in die Durchflusszelle einbauen Eingangsfilter ersetzen Verifikation Messung abschliessen Längere Betriebsunterbrechungen Aufstarten nach einer Wartung des Kraftwerks	36 36 36 37 37 38 39 43 44 45
7. 7.1. 7.2. 7.3. 7.4.	Fehlerbehebung Fehlerliste Schlauchnummerierung Ersatz des EDI-Moduls Die Sicherungen auswechseln	46 47 51 52 54
8. 8.1. 8.2. 8.3. 8.4. 8.5.	Programmübersicht Meldungen (Hauptmenü 1) Diagnose (Hauptmenü 2) Wartung (Hauptmenü 3) Betrieb (Hauptmenü 4) Installation (Hauptmenü 5)	55 56 57 57 58
9.	Programmliste und Erläuterungen 1 Meldungen 2 Diagnose 3 Wartung 4 Betrieb 5 Installation	60 60 62 62 64
10.	Werkseinstellungen	79
11.	Index	82
12.	Notizen	84

Betriebsanleitung

Dieses Dokument beschreibt die wichtigsten Schritte zu Einrichtung, Betrieb und Wartung des Instruments.

1. Sicherheitshinweise

Allgemeines	Die in diesem Abschnitt angeführten Sicherheitsbestimmungen er- klären mögliche Risiken in Verbindung mit dem Betrieb des Instru- ments und enthalten wichtige Sicherheitsanweisungen zu deren Minimierung. Wenn Sie die Informationen in diesem Abschnitt sorgfältig beachten, können Sie sich selbst vor Gefahren schützen und eine sicherere Ar- beitsumgebung schaffen. Weitere Sicherheitshinweise befinden sich in diesem Handbuch je- weils an den Stellen, wo eine Beachtung äusserst wichtig ist. Alle in diesem Dokument angegebenen Sicherheitshinweise sind strikt zu befolgen.
Zielgruppe	Bediener: Qualifizierte Person, die das Gerät für seinen vorgesehe- nen Zweck verwendet. Der Betrieb des Instruments erfordert eingehende Kenntnisse von Anwendungen, Instrumentfunktionen und Softwareprogrammen so- wie aller anwendbaren Sicherheitsvorschriften und -bestimmungen.
Aufbewah- rungsort Handbuch	Die Betriebsanleitung für das AMI CACE muss in der Nähe des Inst- ruments aufbewahrt werden.
Qualifizierung, Schulung	 Um das Instrument sicher zu installieren und zu betreiben, müssen Sie: die Anweisungen in diesem Handbuch lesen und verstehen. die jeweiligen Sicherheitsvorschriften kennen.

1.1. Warnhinweise

Die für sicherheitsbezogene Hinweise verwendeten Signalwörter und Symbole haben folgende Bedeutung:

GEFAHR

Diese Warnung weist auf gefährliche Situationen hin zu schweren Verletzungen oder zum Tod führt.

• Befolgen Sie sorgfältig die Anweisungen zu ihrem Schutz.

WARNUNG

Diese Warnung weist auf gefährliche Situationen hin die möglicherweise zu schweren Verletzungen, zum Tod oder zu grossen Sachschäden führen kann.

• Befolgen Sie sorgfältig die Anweisungen zu ihrem Schutz.

VORSICHT

Diese Warnung weist auf gefährliche Situationen hin die zu leichten Verletzungen, Sachschäden, Fehlfunktionen oder falschen Prozessresultaten führen können.

• Befolgen Sie sorgfältig die Anweisungen zu ihrem Schutz.

Gebotszeichen Die Gebotszeichen in dieser Betriebsanleitung haben die folgende Bedeutung:

Schutzbrille tragen

Schutzhandschuhe tragen

Warnsymbole Die Warnsymbole in dieser Betriebsanleitung haben die folgende Bedeutung:

Warnung vor gefährlicher elektrischer Spannung

Korrodierend

Gesundheitsschädlich

Entflammbar

Allgemeiner Warnhinweis

Achtung allgemein

1.2. Allgemeine Sicherheitsbestimmungen

Gesetzliche Der Benutzer ist für den ordnungsgemässen Betrieb verantwortlich. Anforderungen Alle Vorsichtsmassnahmen sind zu beachten, um einen sicheren Betrieb des Instruments zu gewährleisten.

Ersatzteile und Einwegartikel Es dürfen ausschliesslich Ersatzteile und Einwegartikel von SWAN verwendet werden. Bei Verwendung anderer Teile während der normalen Gewährleistungsfrist erlischt die Herstellergarantie.

Änderungen Modifikationen und Instrumenten-Upgrades dürfen nur von autorisierten Servicetechnikern vorgenommen werden. SWAN haftet nicht für Ansprüche aus nicht autorisierten Modifikationen oder Veränderungen.

WARNUNG

Gefährliche elektrische Spannung

Ist der ordnungsgemässe Betrieb nicht mehr möglich, trennen Sie das Instrument von der Stromversorgung und ergreifen die erforderlichen Massnahmen, um einen versehentlichen Betrieb zu verhindern.

- Zum Schutz vor elektrischen Schlägen immer sicherstellen, dass der Erdleiter angeschlossen ist.
- Wartungsarbeiten d
 ürfen nur von autorisiertem Personal durchgef
 ührt werden.
- Ist eine elektronische Wartung erforderlich, das Instrument sowie Geräte die an folgende Kontakte angeschlossen sind vom Netz trennen:
 - Schaltausgang 1
 - Schaltausgang 2
 - Sammelstörkontakt

WARNUNG

Um das Instrument sicher zu installieren und zu betreiben, müssen Sie die Anweisungen in diesem Handbuch lesen und verstehen.

WARNUNG

Die in diesem Dokument beschriebenen Arbeiten dürfen nur von Personen durchgeführt werden, die von SWAN geschult und autorisiert wurden.

1.3. Nutzungseinschränkungen

Der AMI CACE dient der Bestimmung

- der spezifischen (Gesamt-) Leitfähigkeit und
- der Kationen- (Säure-) Leitfähigkeit

in Kraftwerkswasser.

Das Instrument berechnet den pH-Wert und die Konzentration des Alkalisierungsmittels (NH_3 , Morpholin, etc.), falls ein Alkalisierungsmittel im Wasser vorhanden ist.

Es eignet sich nicht für die pH-Bestimmung in hochreinem Wasser vor der Beigabe des Alkalisierungsmittels.

Bedingungen für die pH-Berechnung:

- nur 1 Alkalisierungsmittel in der Probe
- Hauptverunreinigung NaCl
- die Phosphatkonzentration beträgt <0,5 ppm
- pH-Wert zwischen >7,5 und <11,5
- falls pH-Wert <8, muss die Konzentration der Verunreinigung im Vergleich zum Alkalisierungsmittel klein sein

Kein Öl, kein Fett, kein Sand. Die Verwendung filmbildender Produkte kann die Lebensdauer des EDI-Moduls verringern. Partikelfiltrierung bei hohem Eisengehalt empfohlen.

Die Probe darf keine Fremdkörper enthalten, welche die Durchflusszelle blockieren könnten. Für die korrekte Funktion des Systems ist ein ausreichender Probenfluss unerlässlich.

2. Produktbeschreibung

2.1. Beschreibung des Systems

Anwendungsbereich Komplettes Überwachungssystem zur automatischen, kontinuierlichen Messung der spezifischen (Gesamt-) Leitfähigkeit vor dem Kationentauscher und der Kationen- (Säure-) Leitfähigkeit nach dem Kationentauscher.

Der pH-Wert kann durch die Messung der Leitfähigkeitsdifferenz bestimmt werden.

Sonderfunktionen

- Temperaturkompensationskurven für Leitfähigkeitsmessungen:
 - Starke Säuren (HCI)
 - Starke Basen (NaOH)
 - Ammoniak
 - Morpholin
 - Ethanolamin (ETA)
 - Neutrale Salze
 - Reinstwasser
 - Koeffizient
- Durchflussüberwachung
- Berechnung des pH-Werts gemäss (VGB 450L, Ausgabe 2006)
- Berechnet die Konzentration alkaliner Substanzen in Wasser (Ammoniak, Morpholin oder Ethanolamin).
- Signal-Zwei programmierbare Signalausgänge für Messwerte (frei skalierbar, linear, bilinear oder logarithmisch) oder als Steuerausgang mit ausgänge fortlaufender Signalübertragung. Die Steuerparameter sind programmierbar. Stromschleife: 0/4-20 mA Maximale Belastung: 510 Ω Dritter Signalausgang als Option erhältlich. Der dritte Signalausgang kann als Stromquelle oder als Stromsenke verwendet werden (über einen Schalter auswählbar). Schalt-Zwei als Grenzschalter für Messwerte programmierbare potenzialfreie Kontakte, Regler oder Timer für die Systemreinigung mit autoausgänge matischer Haltefunktion. Die Schaltausgänge können mit einem Jumper als «normalerweise offen» oder «normalerweise geschlossen» konfiguriert werden. Maximallast: 1 A/250 VAC

Sammelstör- kontakt	 Ein potenzialfreier Kontakt. Entweder: Offen bei Normalbetrieb, geschlossen bei Fehler und Strom- ausfall Geschlossen bei Normalbetrieb, offen bei Fehler und Strom- ausfall
	werte und Instrumentenfehler.
Schalteingang	Für potenzialfreie Kontakte zum «Einfrieren» des Messwerts oder zur Unterbrechung der Regelung bei automatischen Installationen (Haltefunktion oder Fernabschaltung).
Kommunika-	USB-Schnittstelle für Logger-Download
tionsschnitt- stelle	 Dritter Signalausgang (kann parallel zur USB-Schnittstelle verwendet werden)
(optional)	 RS485-Schnittstelle mit Feldbus-Protokoll Modbus oder Profibus DP
	HART-Schnittstelle
Sicherheits- funktionen	Kein Datenverlust bei Stromausfall. Alle Daten werden im nicht- flüchtigen Speicher abgelegt. Überspannungsschutz für Ein- und Ausgänge. Galvanische Trennung der Messeingänge von den Sig- nalausgängen.
Messprinzip	Wird eine Spannung zwischen zwei in Elektrolyt getauchten Elektro- den angelegt, wird ein elektrisches Feld erzeugt, das einen Effekt auf die geladenen lonen hat. Die positiv geladenen Kationen bewegen sich hin zur negativen Elektrode (Kathode) die negativ geladenen An- ionen bewegen sich hin zur positiven Elektrode (Anode). Die lonen werden an den Elektroden entweder durch Aufnahme oder Abgabe von Elektronen entladen. Dadurch wird ein Stromfluss erzeugt, der mit dem Ohmschen Gesetz $U = I \times R$ berechnet werden kann. Vom Gesamtwiderstand R des Stromkreises ist nur der Widerstand der Elektrode bzw. ihre Leitfähigkeit $1/R$ von Bedeutung. Die Zellkonstante wird vom Hersteller bestimmt und ist auf dem Sen- soretikett aufgedruckt. Sobald die Konstante in den Messumformer programmiert wurde, werden korrekte Werte ausgegeben. Eine Kali- brierung ist nicht erforderlich, da der Sensor werkseitig kalibriert wurde. Die Masseinheit ist µS/cm oder µS/m.
Spezifische	Die Leitfähigkeit aller lonen in der Probe, hauptsächlich des Alkali-
Leittanigkeit	Das Alkalisierungsmittel wird vom Kationen Austauschbarz im EDL
fähigkeit (Säureleit- fähigkeit)	Modul entfernt. Alle kationischen Ionen werden gegen H+ ausge- tauscht, alle anionischen Verunreinigungen (Ionen mit negativer La- dung) durchwandern die Säule unbehelligt und werden vom zweiten Leitfähigkeitssensor gemessen.

Temperatur- kompensation	Die Mobilität der Ionen in Wasser sowie die Leitfähigkeit erhöht sich mit steigender Temperatur. Aus diesem Grund wird die Temperatur gleichzeitig mit einem integrierten Pt1000 Sensor gemessen und die Leitfähigkeit auf 25 °C kompensiert. Es können verschiedene Tem- peraturkompensationskurven für unterschiedliche Wasserzusam- mensetzungen gewählt werden. Nach dem Kationentauscher (Kationenleitfähigkeit) muss die Tempe- raturkompensationskurve für starke Säuren festgelegt werden. Für weitere Infos hierzu siehe: Influence of Temperature on Electrical Conductivity, PPChem (2012).
Standard- temperatur	Der angezeigte Leitfähigkeitswert wird auf die Standardtemperatur von 25 °C kompensiert.
Korrektur oder Kalibrierung	Nicht erforderlich. Jede Nacht um 00.30 Uhr wird automatisch eine Nullstellung durchgeführt.
Fluidik	Die Probe fliesst in den Durchflusszellenblock [D] über den Probe- einlass [M]. Mit dem ersten Leitfähigkeitssensor [A] wird die spezifi- sche Leitfähigkeit der Probe gemessen. Der Probefluss wird durch einen Kapillarschlauch [G] reguliert, der nach dem ersten Leitfähig- keitssensor folgt. Anschliessend wird die Probe durch die Proben- kammer [J] mit Kationen-Austauschharz geleitet. Danach wird die Kationenleitfähigkeit der Probe mit dem zweiten Leitfähigkeitssensor [B] gemessen. Die Temperatur wird mit den in die Leitfähigkeitssensor soren integrierten Messgebern gemessen. Nach der Messung der spezifischen und Kationen-Leitfähigkeit verlässt die Probe die Mess- zelle durch den Durchflussmesser [E] und durchfliesst die Anoden- kammer, wo Protonen mittels Wasserelektrolyse erzeugt werden: $H_2O> \frac{1}{2}O_2 + 2H^+ + 2e^-$ Danach wird das Wasser durch die Kathodenkammer geleitet, wo es gemäss $2H^+ + 2e^> H_2 bzw. 2H_2O + 2e^> H_2 + 2OH^-$ reduziert wird. Schliesslich verlässt die Probe das EDI-Modul und fliesst in die Ablassleitung.
Regenerie- rung des Kationen-Aus- tauschharzes	An der Anode des EDI-Moduls wird Wasser oxidiert, wobei Protonen entstehen. Diese bewegen sich dann unter dem Einfluss des elektri- schen Feldes in Richtung zur Kathode. Dabei passieren sie die Membran und werden vom Kationen-Austauschharz in der Proben- kammer aufgenommen. Dadurch werden die im Harz befindlichen Kationen freigesetzt. Diese passieren die zweite Membran und be- wegen sich zur Kathodenkammer, wo sie vom Probenstrom aufge- nommen und so aus dem EDI-Modul gespült werden. Durch diesen Prozess wird gewährleistet, dass das Harz kontinuierlich regeneriert wird.

Hinweis: Um den Probenfluss deutlicher zu visualisieren, wird das EDI-Modul nur schematisch dargestellt. Auf Seitenansicht X sind die korrekten Positionen der Kammern und Elektroden dargestellt.

- A Erster Leitfähigkeitssensor
- **B** Zweiter Leitfähigkeitssensor
- **C** Blindstopfen
- **D** Durchflusszellenblock
- E Durchflussmesser
- F Adapterplatte
- G Kapillarschlauch
- H EDI-Modul

- I Entlüftungsschlauch
- J Probenkammer
- K Anodenkammer
- L Kathodenkammer
- M Probeneinlass
- N Ablassleitung
- O Membranen
- X Seitenansicht EDI-Modul

2.2. Instrumentenspezifikationen

Stromversor- gung	AC-Variante: DC-Variante: Stromaufnahme:	100–240 VAC (±10%) 50/60 Hz (±5%) 10–36 VDC max. 35 VA
Proben- anforderungen	Durchflussrate: Temperatur: Probendruck Einlass: Probendruck Auslass: Nutzung eines SWAN-Vo Partikelfiltrierung bei hoh	3 bis 4 l/h bis zu 50 °C bis zu 0.5 bar druckfrei rdruckreglers wird dringend empfohlen. em Eisengehalt empfohlen.
	Hinweis: Kein Öl, kei filmbildender Produkt verringern.	n Fett, kein Sand. Die Verwendung e kann die Lebensdauer des EDI-Moduls
Standort- anforderungen	Der Analysestandort mus Probeneinlass: Probenauslass:	s über folgende Anschlüsse verfügen: Swagelok-1/4-Zoll-Adapter für Edelstahlrohr G 3/8-Zoll-Adapter für flexible
Messbereich	Messbereich 0.055 bis 0.999 µS/cm 1.00 bis 9.99 µS/cm 10.0 bis 99.9 µS/cm 100 bis 1000 µS/cm Automatische Bereichsur	Schlauche 20 x 15 mm Auflösung $0.001 \ \mu$ S/cm $0.1 \ \mu$ S/cm $1 \ \mu$ S/cm nschaltung.
EDI-Kapazität	SC _{max} = 40 μS/cm als Nł SC _{max} = 350 μS/cm als N	H ₄ OH NaOH
Genauigkeit	±1% vom Messwert oder grösser ist)	±1 Digit (je nachdem, welche Zahl
Spezifikationen Messumformer	Gehäuse Umgebungstemperatur: Lagerung und Transport: Feuchtigkeit: Display:	Aluminium, mit einem Schutzgrad von IP 66 / NEMA 4X -10 bis +50 °C -30 bis +85 °C 10–90% rel., nicht kondensierend LCD mit Hintergrundbeleuchtung, 75 x 45 mm

2.3. Übersicht über das Instrument

- A Platte
- **B** Messumformer
- **C** Sensor für spezifische Leitfähigkeit
- **D** Sensor für Kationenleitfähigkeit
- E Durchflusszelle
- F Durchflussmesser
- **G** Elektrodeionisations- (EDI-) Modul
- H Probeneinlass
- I Probenauslass

3. Installation

3.1. Installations-Checkliste

Standort- anforderungen	AC-Variante 100–240 VAC (±10%), 50/60 Hz (±5%) DC-Variante: 10–36 VDC Stromaufnahme: 35 VA Maximum Anschluss an Schutzerde erforderlich. Probenleitung mit genügend Durchfluss und Druck (siehe Instrumentenspezifikationen, S. 14).
Installation	Montieren Sie das Instrument in vertikaler Ausrichtung. Die Anzeige sollte sich auf Augenhöhe befinden. Verschlusskappen [A] von Schläuchen 1, 2, 3, 5 und 10 entfernen und die Schläuche entsprechend der Schlauchnummerierung, S. 51 anschliessen. Probenein- und -auslassleitung anschliessen.
Elektrische Anschlüsse	Alle externen Geräte wie Endschalter, Stromschleifen und Pumpen anschliessen (siehe Anschlussdiagramm, S. 22). Netzkabel anschliessen; Gerät noch nicht einschalten!
Einschalten	Probenfluss öffnen und warten, bis sich das Gerät vollständig gefüllt hat. Einlassdruck überprüfen. Das Instrument einschalten.
Instrument einrichten	Alle sensorspezifischen Parameter programmieren (siehe Sensorparameter, S. 30) Falls notwendig, Berechnung aktivieren (siehe Berechnung, S. 31). Alle Parameter für externe Geräte (Schnittstelle, Rekorder etc.) pro- grammieren. Alle Parameter für den Betrieb des Instruments (Grenzwerte, Alarmwerte) programmieren. Anzeigen programmieren.
Einlaufzeit	Instrument 1 Stunde lang ohne Unterbrechung betreiben.

3.2. Die Instrumententafel montieren

Der erste Teil dieses Kapitels erläutert die Vorbereitung und Platzierung des Instruments für den Gebrauch.

- Das Instrument darf nur von geschultem Personal installiert werden.
- Montieren Sie das Instrument in vertikaler Ausrichtung.
- Zur einfacheren Bedienung das Instrument so anbringen, dass sich die Anzeige auf Augenhöhe befindet.
- Zwecks Installation ist ein Kit mit folgenden Materialien erhältlich:
 - 4 Schrauben 8 x 60 mm
 - 4 Dübel
 - 4 Unterlegscheiben 8,4/24 mm

Montageanforderungen Bas Instrument ist nur für den Gebrauch in Innenräumen gedacht. Für Abmessungen siehe
15.

3.3. Die Probenein- und Auslassleitung anschliessen

3.3.1 Swagelok-Edelstahlarmatur am Probeneinlass

Vorbereitung Rohr ablängen und entgraten. Es sollte auf einer Länge von 1,5 x Rohrdurchmesser vom Ende gerade und frei von Beschädigungen sein.

Bei der Montage und Wiedermontage von grösseren Anschlussstutzen (Gewinde, Klemmring) sollte mit Schmieröl, MoS2, Teflon etc. geschmiert werden.

Installation 1 Kompressionsmuffe [C] und Klemmring [D] in die Überwurfmutter [B] einsetzen.

- 2 Die Überwurfmutter auf das Anschlussstück schrauben, aber nicht festziehen.
- **3** Das Edelstahlrohr durch die Überwurfmutter bis zum Anschlag in das Anschlussstück schieben.
- 4 Die Überwurfmutter an der 6 Uhr Position markieren.
- 5 Die Überwurfmutter mit einem Gabelschlüssel 1¼ Umdrehungen anziehen. Dabei Anschlussstück mit Hilfe eines zweiten Schlüssels gegen Verdrehen sichern.

- A Edelstahlrohr B Überwurfmutter
- **E** Anschlussstück
- *F* Festgezogene Verbindung

3.3.2 Schläuche am EDI-Modul

C Kompressionsmuffe

Verschlusskappen [A] von Schläuchen 1, 2, 3, 5 und 10 entfernen und die Schläuche entsprechend der Schlauchnummerierung, S. 51 anschliessen. Die Verschlusskappen für späteren Gebrauch aufbewahren.

A Verschlusskappe

3.3.3 Schlauch am Probenauslass

Einen Kunststoffschlauch [C] an die Schlauchtülle [B] anschliessen und auf einem Abfluss mit atmosphärischem Druck platzieren.

Elektrische Anschlüsse 3.4

Gefahr durch elektrischen Stromschlag

- Schalten Sie das Instrument vor Arbeiten an elektrischen Bauteilen immer aus.
- Erdungsanforderungen: Schliessen Sie das Instrument nur an eine geerdete Steckdose an.
- · Stellen Sie vor der Inbetriebnahme sicher, dass die Netzspannung vor Ort mit den Spezifikationen des Instruments übereinstimmt

Kabelstärke Zur Einhaltung des Schutzgrades IP 66 verwenden Sie die folgenden Kabelstärken:

- A PG 11 Kabelverschraubung: Kabel Ø_{aussen} 5–10 mm
- **B** PG 7 Kabelverschraubung: Kabel Ø_{aussen} 3–6,5 mm **C** PG 9 Kabelverschraubung: Kabel Ø_{aussen} 4–8 mm

Hinweis: Verschliessen Sie nicht verwendete Leitungseinführungen.

- Für Stromversorgung und Schaltausgang: Verwenden Sie Verdrahtung Litzendraht (max. 1,5 mm²/AWG 14) mit Aderendhülsen.
 - Für Signalausgänge und Schalteingang: Verwenden Sie Litzendraht (max. 0,25 mm²/AWG 23) mit Aderendhülsen.

WARNUNG

Fremdspannung

Extern gespeiste Geräte die an Schaltausgang 1 oder 2 oder an den Sammelstörkontakt angeschlossen sind können elektrische Schläge verursachen.

- vor der Fortführung der Installation müssen Geräte die an folgende Kontakte angeschlossen sind vom Netz getrennt werden.
 - Schaltausgang 1
 - Schaltausgang 2
 - Sammelstörkontakt

WARNUNG

Um elektrische Schläge zu verhindern, das Instrument nicht mit dem Stromnetz verbinden, wenn kein Erdleiter (PE) angeschlossen ist.

WARNUNG

Die Hauptstromversorgung des AMI-Messumformers muss mit einem Hauptschalter und geeigneter Sicherung oder einem Schutzschalter gesichert sein.

VORSICHT

Verwenden Sie nur die in diesem Diagramm dargestellten Klemmen und nur zum vorgesehenen Zweck. Der Einsatz anderer Klemmen kann zu Kurzschlüssen und damit zu Beschädigungen oder Verletzungen führen.

3.4.2 Stromversorgung

WARNUNG

Warnung vor elektrischem Schlag

Die Installation und Wartung elektrischer Teile muss durch einen Fachmann erfolgen. Das Instrument vor Arbeiten an elektrischen Bauteilen immer ausschalten.

- A Netzteilanschluss-Stecker
- B Neutralleiter, Klemme 2
- C Aussenleiter, Klemme 1
- **D** Schutzleiter

Hinweis: Der Schutzleiter (Erde) muss an der Erdungsklemme angeschlossen werden.

Installationsbedingungen

Die Installation muss folgende Bedingungen erfüllen:

- Das Stromkabel muss den Normen IEC 60227 oder IEC 60245 sowie der Brandschutzklasse FV1 entsprechen.
- Die Stromversorgung mit einem externen Schalter oder Unterbrecher muss
 - sich nahe am Gerät befinden
 - für den Bediener leicht zugänglich sein
 - als Unterbrecher gekennzeichnet sein für AMI CACE

3.5. Schaltkontakte

3.5.1 Schalteingang

Hinweis: Verwenden Sie nur potenzialfreie (trockene) Kontakte. Der Gesamtwiderstand (Summe aus dem Kabelwiderstand und dem Widerstand des Relais) muss kleiner als 50 Ω sein.

Klemmen 16/42 Nähere Informationen zur Programmierung finden Sie in Programmliste und Erläuterungen, S. 60.

3.5.2 Sammelstörkontakt

Hinweis: Maximalbelastung 1 A/250 VAC

Alarmausgang für Systemfehler.

Informationen zu Fehlercodes erhalten Sie in Fehlerbehebung, S. 46.

Hinweis: Bei bestimmten Alarmen und bei bestimmten Einstellungen am AMI Transmitter schaltet das Alarmrelais nicht. Der Fehler wird jedoch am Display angezeigt.

	Klemmen	Beschreibung	
NC ¹⁾ Normaler- weise geschlossen	10/11	Aktiv (geöffnet) im Normalbe- trieb. Inaktiv (geschlossen) bei Feh- lern und Stromausfall.	
NO Normaler- weise offen	12/11	Aktiv (geschlossen) im Nor- malbetrieb. Inaktiv (geöffnet) bei Fehlern und Stromausfall.	

1) Normale Verwendung

3.5.3 Schaltausgang 1 und 2

Hinweis: Maximalbelastung 1 A/250 VAC

Die Schaltausgänge 1 und 2 können mit einem Jumper als «normalerweise offen» oder «normalerweise geschlossen» konfiguriert werden. Standard für beide Schaltausgänge ist «normalerweise offen». Um einen Schaltausgang als «normalerweise geschlossen» zu konfigurieren, den Jumper in die obere Position setzen.

Hinweis: Bestimmte Fehlermeldungen und der Instrumentstatus können den nachfolgend beschriebenen Relaisstatus beeinflussen.

Konfigur ation	Klemmen	Jumper Position	Beschreibung	Relaiskonfiguration
normaler- weise offen	6/7: Relais 1 8/9: Relais 2		Inaktiv (geöffnet) bei Normal- betrieb und Stromausfall. Aktiv (geschlossen) wenn eine programmierte Funktion aus- geführt wird.	6
normaler- weise geschlos- sen	6/7: Relais 1 8/9: Relais 2	•	Inaktiv (geschlossen) bei Nor- malbetrieb und Stromausfall. Aktiv (geöffnet) wenn eine pro- grammierte Funktion ausge- führt wird.	

A Jumper in Position «normalerweise offen» (Standard)
 B Jumper in Position «normalerweise geschlossen»

Programmierung siehe Programmliste und Erläuterungen, S. 60, Menü Installation.

VORSICHT

Mögliche Beschädigung der Schaltkontakte im AMI-Messumformer verursacht durch hohe induktive Last.

Stark induktive oder direkt gesteuerte Lasten (Magnetventile, Dosierpumpen) können die Schaltkontakte zerstören.

• Um induktive Lasten > 0.1 A zu schalten, eine AMI Relaybox oder ein passendes Hochstromrelais verwenden.

Induktive Last Kleine induktive Lasten von max. 0,1 A wie z. B. die Spule eines Netzrelais lassen sich direkt schalten. Um Störspannungen im AMI Messumformer zu vermeiden, ist der Anschluss einer Dämpferschaltung parallel zur Last zwingend erforderlich, das ist bei der Verwendung einer AMI-Relaisbox nicht notwendig.

- A AC oder DC Speisung
- **B** AMI Messumformer
- C Externes Hochstromrelais
- D Dämpferschaltung
- E Spule des Hochstromrelais

Ohmsche Last Ohmsche Lasten (max. 1 A) und Regelsignale für PLC, Impulspumpen usw. können ohne zusätzliche Massnahmen direkt angeschlossen werden.

- A AMI Messumformer
- **B** PLC oder gesteuerte Pulspumpe
- C Logikschaltung
- Aktuatoren Stellmotoren und Aktoren verwenden beide Schaltkontakte: den einen zum Öffnen und den anderen zum Schliessen des Ventils, d. h. bei zwei verfügbaren Schaltkontakten kann nur ein Motorventil angesteuert werden. Motoren mit mehr als 0,1 A müssen über Hochstromrelais oder eine AMI-Relaisbox gesteuert werden.

- A AC oder DC Speisung
- **B** AMI Messumformer
- **C** Aktuator

3.6. Signalausgänge

3.6.1 Signalausgang 1 und 2 (Stromausgänge)

Hinweis: Maximallast 510 Ω Werden Signale an zwei verschiedene Empfänger geschickt, sollte ein Signaltrenner (Schleifenisolator) verwendet werden.

Signalausgang 1: Klemmen 14 (+) und 13 (-) Signalausgang 2: Klemmen 15 (+) und 13 (-) Für weitere Infos zur Programmierung siehe Programmliste und Erläuterungen, S. 60, Menü **Installation**.

3.7. Schnittstellenoptionen

- A AMI-Messumformer
- B Schnittstellensteckplatz
- C Schraubklemmen

Der Schnittstellensteckplatz kann verwendet werden um die Funktionalität des AMI Instruments mit einer der folgenden Schnittstellen zu erweitern:

- dritter Signalausgang,
- Profibus- oder Modbus-Anschluss,
- HART-Anschluss oder
- USB-Schnittstelle

3.7.1 Signalausgang 3

Klemmen 38 (+) und 37 (-).

Erfordert die Żusatzplatine für den dritten Signalausgang 0/4 - 20 mA. Der dritte Signalausgang kann als Stromquelle oder als Stromsenke verwendet werden (über Schalter [A] auswählbar). Nähere Informationen finden Sie in den dazugehörigen Installationsanweisungen

Hinweis: Maximallast 510 Ω.

Dritter Signalausgang 0/4 - 20 mA

. A

A Betriebsmodus-Wahlschalter

3.7.2 Profibus-, Modbus-Schnittstelle

Klemme 37 PB, Klemme 38 PA

Infos zum Aufbau eines Netzwerks mit mehreren Geräten oder zur Konfiguration einer PROFIBUS DP-Verbindung finden Sie im PROFI-BUS-Handbuch. Entsprechendes Netzwerkkabel verwenden.

Hinweis: Bei nur einem installierten Gerät bzw. am letzten Gerät auf dem Bus muss der Schalter auf EIN stehen.

Profibus-, Modbus-Schnittstelle (RS 485)

A Ein-/Aus-Schalter

3.7.3 HART-Schnittstelle

Klemmen 38 (+) und 37 (-). Die HART-Schnittstelle ermöglicht Kommunikation über das HART-Protokoll. Nähere Informationen finden Sie in der HART-Anleitung.

HART-Schnittstelle

3.7.4 USB-Schnittstelle

Die USB-Schnittstelle wird zum Speichern von Logger-Daten und für Firmware-Uploads verwendet. Nähere Informationen finden Sie in den dazugehörigen Installationsanweisungen.

Der optionale dritte Signalausgang 0/4 - 20 mA [B] kann an die USB-Schnittstelle angeschlossen und parallel verwendet werden.

USB Interface

- A USB-Schnittstelle
- B Dritter Signalausgang 0/4 20 mA

4. Das Instrument einrichten

Nach der Installation des Instruments gemäss den obigen Anweisungen das Netzkabel anschliessen. Gerät noch nicht einschalten.

4.1. Probenfluss öffnen

- 1 Probenhahn aufdrehen
- 2 Einlassdruck überprüfen
- 3 Warten, bis sich das System vollständig gefüllt hat
- 4 System einschalten
- 5 Gerät 1 Stunde lang betreiben

4.2. Programmierung

Alle Sensorparameter über Menü < Installation/Sensoren> konfigu-Sensorrieren. parameter Menü 5.1.2.1.1 für Sensor 1 und Menü 5.1.2.2.1 für Sensor 2. Die Sensorcharakteristika sind auf dem Etikett des Sensors aufgedruckt. 87-344.203 UP-Con1000SL Sensortyp SW-xx-xx-xx 7K = 0.0417**Zellkonstante** SWAN AG DT = 0.06 °C Temperaturkorrektur Für jeden Sensor Folgendes eingeben: Zellkonstante [cm^{-1]}

- Temperaturkorrektur [°C]
- Kabellänge: Falls die Durchflusszelle am Monitor installiert ist, Kabellänge auf 0,0 m setzen.
- Temperaturkompensation: Die Standardeinstellung f
 ür Sensor 1 (spezifische Leitf
 ähigkeit) ist Ammoniak. Sensor 2 (Kationenleitf
 ähigkeit) ist standardm
 ässig auf starke S
 äuren eingestellt.

AMI CACE

Das Instrument einrichten

Berechnung	Menü 5.1.1.1 Option <berechnung> auf «Ja» einstellen, wenn ph-Wert und Alkalisierungsmittel berechnet und angezeigt werden sollen.</berechnung>
Masseinheit	Menü 5.1.1.2 <masseinheit> gemäss Ihren Anforderungen einstellen. • μS/cm • μS/m</masseinheit>
Display	Menü 4.4.1, Bildschirm 1 Menü 4.4.2, Bildschirm 2 Display-Bildschirme gemäss Ihren Anforderungen programmieren. Sie- he dazu Programmliste und Erläuterungen unter 4.4 Anzeige, S. 63.
Externe Geräte	Alle Parameter für externe Geräte (Schnittstelle, Rekorder etc.) pro- grammieren. Siehe dazu Programmliste und Erläuterungen unter 5.2 Signalausgänge, S. 65 und 4.2 Schaltkontakte, S. 63.
Grenzwerte, Alarme	Alle Parameter für den Betrieb des Instruments (Grenzwerte, Alarm- werte) programmieren. Siehe dazu Programmliste und Erläuterun- gen unter 4.2 Schaltkontakte, S. 63.

AMI CACE Betrieb

5. Betrieb

5.1. Tasten

- A das Menü verlassen, den Befehl abbrechen (ohne Änderungen zu speichern) oder zur vorherigen Menüebene zurückkehren
- **B** in einer Menüliste ABWÄRTS bewegen oder Werte verringern
- **C** in einer Menüliste AUFWÄRTS bewegen oder Werte erhöhen zwischen Display 1 und 2 hin und her wechseln
- D ein ausgewähltes Untermenü öffnen einen Eintrag akzeptieren

5.2. Messwerte und Symbole am Display

5.3. Aufbau der Software

Hauptmenü	1
Meldungen	•
Diagnose	•
Wartung	•
Betrieb	•
Installation	•

-		
	Meldungen	1.
	Anliegende Fehler	•
	Wartungs-Liste	•
	Meldungs-Liste	•

Diagnose	2.1
Identifikation	•
Sensoren	
Probe	•
E/A Zustände	•
Schnittstelle	•

Wartung	3.1
Simulation	
EDI wechseln	
Uhr stellen 23.09.06 16:30	00

Betrieb	4.1
Sensoren	
Schaltkontakte	
Logger	
Anzeige	

Installation	5.1
Sensoren	•
Signalausgänge	•
Schaltkontakte	
Diverses	•
Schnittstelle	►

34

Menü 1: Meldungen

Zeigt die aktuellen Fehler sowie ein Ereignisprotokoll (Zeit und Status von Ereignissen, die zu einem früheren Zeitpunkt eingetreten sind) sowie Wartungsanfragen. Enthält benutzerrelevante Daten.

Menü 2: Diagnose

Enthält benutzerrelevante Instrumenten- und Probendaten.

Menü 3: Wartung

Für Instrumentenkalibrierung, Service, Schalt- und Signalausgangssimulation und Einstellung der Instrumentenzeit.

Verwaltung durch den Kundendienst.

Menü 4: Betrieb

Untermenü von Menü 5 - **Installation**, aber prozessbezogen. Anwenderrelevante Parameter, die während des täglichen Betriebs möglicherweise angepasst werden müssen. Normalerweise passwortgeschützt und durch Prozess-Bediener verwaltet.

Menü 5: Installation

Zur Erstinbetriebnahme des Instruments und Einstellung aller Instrumentenparameter durch autorisierte SWAN-Techniker. Kann durch ein Passwort geschützt werden.

5.4. Parameter und Werte ändern

Ändern von Parametern Das folgende Beispiel zeigt, wie das Logintervall geändert wird:

Den Menüpunkt auswählen der 1 4.4.1 Logger geändert werden soll. 30 min Logintervall 2 [Enter] drücken. Logger löschen ► 3 Mit der < >> oder < > Logger 413 Taste den gewünschten Parameter Intervall Loginterv T auswählen. 5 Minuten Logger lö [Enter] drücken, um die Auswahl 10 Minuten 4 zu bestätigen oder [Exit], um den 30 Minuter 1 Stunde Parameter beizubehalten. \Rightarrow Der ausgewählte Parameter wird Logger 4.1.3 angezeigt (ist aber noch nicht 10 Minuten Logintervall gespeichert). Logger löschen nein [Exit] drücken. 5 \Rightarrow Ja ist markiert. Logger 4.1.3 6 [Enter] drücken, um den neuen nuten Loginter Speichern' Parameter zu speichern. Logger I nein Ja \Rightarrow Der Messumformer wird neu Nein gestartet und der neue Parameter wird übernommen. Ändern von Den Wert auswählen der geändert 1 Leitf. 1 (sc) 5.3.1.1.1 Werten werden soll. Alarm hoch 3000 uS 2 [Enter] drücken. Alarm tief 0.000 µS Hysterese 10.0 µS 3 Mit der < > oder < >> Verzögerung 5 Sek Taste den neuen Wert einstellen. [Enter] drücken, um die Änderung 4 Leitf. 1 (sc) 5.3.1.1.1 zu bestätigen. 2500 µS Alarm hoch 5 [Exit] drücken. Alarm tief 0.000 µS

10.0 uS

5 Sek

Hysterese Verzögerung

- \Rightarrow Ja ist markiert.
- 6 [Enter] drücken, um den neuen Wert zu speichern.

6. Wartung

6.1. Wartungsplan

Monatlich	Probenfluss kontrollieren.Einlassdruck überprüfen.
Falls nötig	 Leitfähigkeitssensoren reinigen. Einlassfilter (falls installiert) ersetzen. Verifikationsmessung durchführen

6.2. Betriebsstopp zwecks Wartung

- 1 Probenfluss stoppen.
- 2 Das Instrument ausschalten.

6.3. Sensor warten

- A Leitfähigkeitssensor
- **B** Sicherungsstift entriegelt
- **C** Sicherungsschraube gelöst
- D Sicherungsstift verriegelt
- E Ausrichtungsmarkierungen
- **F** Sicherungsschraube festgezogen

6.3.1 Sensor aus der Durchflusszelle ausbauen

Die Sensoren sind in der Durchflusszelle per Swan Slot-Lock-System fixiert. Zum Ausbauen der Sensoren wie folgt vorgehen:

- 1 Den Sicherungsstift [B] nach unten drücken.
- 2 Die Sicherungsschraube [C] mit einem 5-mm-Inbusschlüssel 180° gegen den Uhrzeigersinn drehen. ⇒ Der Sicherungsstift bleibt unten.
- 3 Den Sensor ausbauen.

Reinigen Bei leichter Verunreinigung den Sensor mit Seifenlauge und Pfeifenbürste reinigen. Bei grösseren Verschmutzungen die Sensorspitze für kurze Zeit in 5%-ige Salzsäure eintauchen.

6.3.2 Sensor in die Durchflusszelle einbauen

- 1 Der Sicherungsmechanismus muss entriegelt sein, Inbusschraube in Position [C] und Sicherungsstift in Position [B].
- 2 Den Sensor so in die Durchflusszelle einführen, dass die Markierungen [E] senkrecht übereinander stehen.
- **3** Die Inbusschraube mit einem 5 mm Inbusschlüssel 180° im Uhrzeigersinn drehen.

 \Rightarrow Der Sicherungsstift rastet in die verriegelte Position ein.

6.4. Eingangsfilter ersetzen

Wann muss der Filter ausgetauscht werden?

Der Filter muss ausgetauscht werden, wenn der Probenstrom durch den Filter zu gering ist. Die Fehlermeldung E010 "Sample flow low" kann als Indikator verwendet werden.

Hinweis:

- Wird die Fehlermeldung E010 angezeigt, misst das Gerät normal weiter, bis die Fehlermeldung E044 "No sample flow" erscheint.
- Eisenpartikel, die sich im Filter ansammeln, führen nach kurzer Zeit zu einer dunklen Verfärbung des Filters. Dies ist kein Hinweis auf einen verstopften Filter und kann ignoriert werden.

Wenn der Fehler E010 angezeigt wird, wie folgt vorgehen:

- 1 Eingangsdruck überprüfen.
- 2 Wenn der Eingangsdruck in Ordnung ist, das Gerät ohne angeschlossenen Filter testen.
- 3 Wenn der Probenfluss ohne angeschlossenen Filter normal ist, den Filter ersetzen.

InstallationVor der Installation des neuen Filters etwas Teflonband um die bei-
den Gewinde [A] wickeln. Dann die Adapter [B] vom alten Filter ent-
fernen und auf den neuen Filter schrauben.

- A Gewinde NPT 1/4"
- **B** Adapter
- C Teflonband

6.5. Verifikation

Die vom AMI CACE gemessenen Werte können mit einem AMI Inspector Conductivity verifiziert werden. Der Anschluss erfolgt über ein optionales Adapterkit.

Inhalt des **Adapterkits** Das Adapterkit enthält die folgenden Teile:

- A Verbindungsstück M6 auf M6 E Adapter ¹/₄ Zoll auf M6
- **B** Blindstopfen
- **C** Kompressionsmuffe
- **D** Klemmring

- **F** Überwurfmutter
- G FEP-Schlauch 170 cm

D

Probeneinlass am AMI Inspector

F

Messaufbau für spezifische Leitfähigkeit

J Durchflusszelle AMI Inspector K Durchflussregulierventi
 L FEP-Schlauch 170 cm
 M Abfluss

Hinweis: Der AMI CACE kann mit diesem Messaufbau keinen Probenfluss erkennen und gibt die entsprechenden Fehlermeldungen aus. Dies hat jedoch keinen Einfluss auf den Messwert.

Messaufbau für Kationenleitfähigkeit

42

- М6
- B Blindstopfen
- Durchflusszelle AMI CACE 1
- J Durchflusszelle AMI Inspector
- K Durchflussregulierventil
- FEP-Schlauch 170 cm L
- M Abfluss

6.5.1 Messung abschliessen

- 1 Probenfluss zum AMI CACE durch Schliessen des jeweiligen Ventils z.B. am Rückdruckregler unterbrechen.
- 2 Regelventil zum AMI Inspector schliessen.
- 3 AMI Inspector durch Entfernen des Schlauches trennen.
- 4 Probenfluss zum AMI CACE wieder starten und regeln.
- **5** AMI Inspector ausschalten, wie im Kapitel Längere Betriebsunterbrechungen im Handbuch zum AMI Inspector beschrieben.

6.6. Längere Betriebsunterbrechungen

Falls das Instrument während einer längeren Zeitspanne (2 Monate oder mehr) nicht benutzt wird, das EDI-Modul entleeren und die rot markierten Verschraubungen mit den mitgelieferten Verschlusskappen [A] verschliessen.

A Verschlusskappe

- Vorgehen
- 1 Probenfluss unterbrechen.
 - 2 Die oberen Enden der Schläuche 1 und 2 abschrauben.
- 3 Das EDI-Modul durch Schlauch 2 entleeren.
- 4 Schläuche 1 und 2 mit den Verschlusskappen [A] verschliessen.
- **5** Schläuche 3, 5 und 10 an den rot markierten Positionen abschrauben und mit den Verschlusskappen [A] verschliessen.
- 6 Instrument vom Netz trennen.

6.7. Aufstarten nach einer Wartung des Kraftwerks

Um nach einem längeren Stillstand des Kraftwerks eine Eisenansammlung in der Probenkammer zu vermeiden, kann der AMI CACE temporär mit dem folgenden Messaufbau betrieben werden. Bei diesem Messaufbau wird nur die spezifische Leitfähigkeit gemessen.

Hinweis: Der AMI CACE kann mit diesem Messaufbau keinen Probenfluss erkennen und gibt die entsprechenden Fehlermeldungen aus. Dies hat jedoch keinen Einfluss auf den Messwert.

- 1 Die oberen Enden der Schläuche 1 and 5 abschrauben.
- 2 Schlauch 5 wie im Bild gezeigt anschliessen.

7. Fehlerbehebung

Dieses Kapitel bietet einige Anleitungen, mit denen die Fehlersuche einfacher wird. Nähere Informationen zur Handhabung und Reinigung der Teile finden sich im Kapitel Wartung, S. 36. Nähere Informationen zur Programmierung des Instruments finden sich in Kapitel Programmliste und Erläuterungen, S. 60. Bei weiteren Fragen wenden Sie sich bitte an Ihren Händler. Notieren Sie sich vor der Kontaktaufnahme die Seriennummer des Instruments sowie alle Diagnosewerte.

Bedingungen für die pH-Berechnung

- nur 1 Alkalisierungsmittel (Säure-Basen-Paar) in der Probe (keine Mischung)
- Hauptverunreinigung NaCl
- die Phosphatkonzentration beträgt <0,5 ppm
- falls der pH-Wert <8, muss die Konzentration der Verunreinigung im Vergleich zum Alkalisierungsmittel klein sein
- pH-Wert ist >7.5, und <11.5

Problem	Mögliche Ursache
Leitfähigkeitswert <0.055 µS/cm	 Luft im Sensor oder Sensor freiliegend, Installation überprüfen.
Kein pH-/Ammo- niakwert auf Anzeige, Relais, Signalausgang	 Berechnungen in <installation> / <sensor> / <verschiedenes> einschalten.</verschiedenes></sensor></installation> Anschliessend Bildschirm 1 und 2 in <betrieb> / <anzeige> / <bildschirm 1="">,</bildschirm></anzeige></betrieb> <bildschirm 2=""> programmieren.</bildschirm>

7.1. Fehlerliste

Fehler

Nicht schwerwiegender Fehler. Gibt einen Alarm aus, wenn ein programmierter Wert überschritten wurde.

Diese Fehler sind **E0xx** (schwarz und fett) gekennzeichnet.

Schwerwiegender Fehler \mathcal{K} (Symbol blinkt) Die Steuerung der Dosiervorrichtung wird unterbrochen. Die angezeigten Messwerte sind möglicherweise falsch. Schwerwiegende Fehler werden 2 Kategorien aufgeteilt:

- Fehler die verschwinden, wenn die korrekten Messbedingungen wieder hergestellt sind (z.B. Probenfluss tief).
 Solche Fehler sind E0xx (orange und fett) gekennzeichnet.
- Fehler die einen Hardwaredefekt des Instruments anzeigen. Solche Fehler sind **E0xx** (rot und fett) gekennzeichnet).

▶

Anliegende Fehler 1.1.5 Fehler Code E010 Probenfluss tief Quittieren mit <Enter>

Meldungs-Liste

✔ Fehler oder - ★

Zum Menü <Meldungen>/ <Anliegende Fehler> navigieren.

Anliegende Fehler mit [ENTER] quittieren.

⇒ Die Fehler werden zurückgesetzt und in der Meldungsliste gespeichert.

Fehler	Beschreibung	Korrekturmassnahmen
E001	Leitf. 1 Alarm hoch	 Prozess überprüfen Programmierte Werte überprüfen siehe 5.3.1.1, S. 71
E002	Leitf. 1 Alarm tief	 Prozess überprüfen Programmierte Werte überprüfen siehe 5.3.1.1, S. 71
E003	Leitf. 2 Alarm hoch	 Prozess überprüfen Programmierte Werte überprüfen siehe 5.3.1.1.2.1, S. 71
E004	Leitf. 2 Alarm tief	 Prozess überprüfen Programmierte Werte überprüfen siehe 5.3.1.1.2.25, S. 71
E007	Temp. 1 hoch	 Prozess überprüfen Programmierte Werte überprüfen siehe 5.3.1.1.4, S. 71
E008	Temp. 1 tief	 Prozess überprüfen Programmierte Werte überprüfen siehe 5.3.1.1.4, S. 71
E009	Probenfluss hoch	 Probenfluss überprüfen
E010	Probenfluss tief	 Druck am Probeneinlass prüfen Prüfen, ob folgende Komponenten verstopft sind: Einlassfilter (falls installiert) Schläuche EDI-Modul Falls nötig, verstopfte Teile ersetzen. Siehe Schlauchnummerierung, S. 51 und Ersatz des EDI-Moduls, S. 52.
E011	Temp. 1 Kurzschluss	Verdrahtung Sensor überprüfenSensor überprüfen
E012	Temp. 1 Unterbruch	Verdrahtung Sensor überprüfenSensor überprüfen

Fehler	Beschreibung	Korrekturmassnahmen
E013	Gehäusetemp. hoch	 Gehäuse-/Umgebungstemperatur prüfen Programmierte Werte überprüfen, siehe 5.3.1.3.1, S. 72
E014	Gehäusetemp. tief	 Gehäuse-/Umgebungstemperatur prüfen Programmierte Werte überprüfen, siehe 5.3.1.3.2, S. 73
E015	pH Berechnung	– Berechneter pH Wert < 7.5 oder > 11.5
E017	Ueberw.zeit	 Steuergerät oder Programmierung in Installation/Schaltkontakte überprüfen siehe 5.3.2 & 5.3.3, S. 73
E019	Temp. 2 Kurzschluss	 Verdrahtung Sensor überprüfen Sensor überprüfen
E020	Temp. 2 Unterbruch	Verdrahtung Sensor überprüfenSensor überprüfen
E024	Schalteingang aktiv	 Siehe Menu 5.3.4, S. 76 ob Störung auf ja programmiert ist.
E026	IC LM75	 Service anrufen
E028	Signalausgang offen	 Verdrahtung an Signalausgängen 1 und 2 pr
E030	EEProm Front-End	 Service anrufen
E031	Eichung Signalausg.	 Service anrufen
E032	Falsches Front-End	 Service anrufen
E033	pH Alarm hoch	 Prozess überprüfen Programmierte Werte überprüfen siehe 5.3.1.1.4.1, S. 71
E034	pH Alarm tief	 Prozess überprüfen Programmierte Werte überprüfen siehe 5.3.1.1.4.25, S. 71
E035	Alkali Alarm hoch	 Prozess überprüfen Programmierte Werte überprüfen siehe 5.3.1.1.5, S. 72

Fehler	Beschreibung	Korrekturmassnahmen		
E036	Alkali Alarm tief	 Prozess überprüfen Programmierte Werte überprüfen siehe 5.3.1.1.5, S. 72 		
E037	Temp. 2 Alarm hoch	 Prozess überprüfen Programmierte Werte überprüfen siehe 5.3.1.2.2.1, S. 72 		
E038	Temp. 2 Alarm tief	 Prozess überprüfen Programmierte Werte überprüfen siehe 5.3.1.2.2.25, S. 72 		
E043	EDI ausserhalb des Bereichs	 Druck am Probeneinlass pr üfen und diese Fehlermeldung quittieren Falls der Fehler weiter besteht, Probenfluss unterbrechen und technischen Dienst anrufen 		
E044	Kein Probenfluss	 Druck am Probeneinlass prüfen Prüfen, ob folgende Komponenten verstopft sind: Einlassfilter (falls installiert) Schläuche EDI-Modul Falls nötig, verstopfte Teile ersetzen. Siehe Schlauchnummerierung, S. 51 und Ersatz des EDI-Moduls, S. 52. 		
E045	EDI DAC Unterbruch	 Probenfluss stoppen und technischen Dienst anrufen 		
E046	EDI ADC Unterbruch	 Probenfluss stoppen und technischen Dienst anrufen 		
E047	EDI-Modul abgenutzt	- EDI-Modul ersetzen, siehe Ersatz des EDI-Moduls, S. 52.		
E049	Einschalten	 keine, Statusmeldung 		
E050	Ausschalten	 keine, Statusmeldung 		
E065	EDI-Modul erschöpft	- EDI-Modul ersetzen, siehe Ersatz des EDI-Moduls, S. 52.		

7.2. Schlauchnummerierung

Hinweis: Um Schlauch Nr. 10 zu ersetzen, muss das EDI-Modul abmontiert werden. Gemäss Ersatz des EDI-Moduls, S. 52 vorgehen (am Ende der Prozedur <nein> auswählen).

7.3. Ersatz des EDI-Moduls

Wann ist das EDI-Modul zu ersetzen?	Das EDI-Modul sollte ausgetauscht oder gewartet werden, wenn die Fehlermeldung E047 angezeigt wird. Diese Fehlermeldung er- scheint, wenn die Spannung des EDI-Moduls (2.2.3.1, S. 61) über längere Zeit den maximal zulässigen Wert von 8 Volt übersteigt. Wenn die Fehlermeldung erscheint, misst das Gerät normal weiter und es verbleiben noch etwa 10% der Lebensdauer des EDI-Mo- duls. Der Austausch bzw. die Wartung des EDI-Moduls sollte dann innerhalb einiger Wochen vorgenommen werden.
Lagerung von EDI-Modulen	EDI-Module sollten nach Möglichkeit nicht gelagert, sondern erst bei Bedarf bestellt werden. Je länger die Lagerdauer, desto länger die Einlaufzeit bei der Inbetriebnahme. Falls eine Lagerung dennoch un- umgänglich ist, das EDI-Modul an einem kühlen und dunklen Ort la- gern.
Ersatz des EDI-Moduls	 Menü 3.3 auswählen (Wartung/Austausch EDI) und den Anweisungen auf dem Bildschirm folgen. Status von Schaltausgängen und Signalausgängen während des Vorgangs: Signalausgänge sind auf Halten gesetzt Alle Grenzwerte sind deaktiviert Am Ende der Prozedur wird der Benutzer gefragt, ob das EDI-Modul

Am Ende der Prozedur wird der Benutzer gefragt, ob das EDI-Modul ausgetauscht worden ist. Wählen Sie <Ja>, um die Totalisatoren im Diagnosemenü zurückzusetzen und das Austauschdatum zu speichern.

EDI wechseln	3.3.1
Wurde das EDI	
Modul getauscht?	
Ja	
Nein	

53 🗖

7.4. Die Sicherungen auswechseln

WARNUNG

Fremdspannung

Extern gespeiste Geräte die an Schaltausgang 1 oder 2 oder an den Sammelstörkontakt angeschlossen sind können elektrische Schläge verursachen.

- vor der Fortführung der Installation müssen Geräte die an folgende Kontakte angeschlossen sind vom Netz getrennt werden.
 - Schaltausgang 1
 - Schaltausgang 2
 - Sammelstörkontakt

Bei durchgebrannten Sicherungen vor dem Auswechseln zuerst die Ursache ermitteln. Zum Ausbauen defekter Sicherungen eine Pinzette oder Spitzzange verwenden.

Nur Originalsicherungen von SWAN einsetzen.

A AC-Variante: 1.6 AT/250 V Instrumentennetzteil DC-Variante: 3.15 AT/250 V Instrumentennetzteil

- B 1.0 AT/250 V Schaltausgang 1
- C 1.0 AT/250 V Schaltausgang 2
- D 1.0 AT/250 V Sammelstörkontakt
- E 1.0 AF/125 V Signalausgang 2
- F 1.0 AF/125 V Signalausgang 1
- G 1.0 AF/125 V Signalausgang 3

8. Programmübersicht

Erklärungen zu den einzelnen Menüparametern finden Sie unter Programmliste und Erläuterungen, S. 60.

- Menü 1 Meldungen informiert über anstehende Fehler und Wartungsaufgaben und zeigt die Fehlerhistorie. Passwortschutz möglich. Es können keine Einstellungen geändert werden.
- Menü 2 Diagnose ist jederzeit für alle Anwender verfügbar. Kein Passwortschutz. Es können keine Einstellungen geändert werden.
- Menü 3 Wartung ist für den Kundendienst vorgesehen: Kalibrierung, Simulation der Ausgänge und Einstellung von Uhrzeit/Datum. Bitte per Passwort schützen.
- Menü 4 Betrieb ist für den Anwender vorgesehen und ermöglicht die Einstellung von Grenzwerten, Alarmwerten usw. Die Voreinstellung erfolgt über das Menü Installation (nur für den Systemtechniker). Bitte per Passwort schützen.
- Menü 5 Installation dient zur Programmierung von allen Einund Ausgängen, Messparametern, Schnittstelle, Passwörtern etc. Menü für den Systemtechniker. Passwort dringendst empfohlen.

8.1. Meldungen (Hauptmenü 1)

Anliegende Fehler 1.1*	Anliegende Fehler	1.1.5*	*Menünummern
Wartungsliste 1.2*	Wartungsliste	1.2.5*	
Meldungsliste 1.3*	Nummer Datum/Uhrzeit	1.3.1*	

8.2. Diagnose (Hauptmenü 2)

Identifikation	Bezeichnung	AMI CACE		*Menünummern
2.1*	Version	V6.27-07/18		
	Werksprüfung	Instrument	2.1.4.1*	
	2.1.4*	Hauptplatine		
		Front-End		
	Betriebszeit	Jahre, Tage, Stunden,	Minuten, Sekunden	2.1.5.1*
	2.1.5*			
Sensoren	Leitfähigkeit	Sensor 1	Messwert	2.2.1.1.1*
2.2*	2.2.1*	2.2.1.1*	Rohwert	
			Zellkonstante	
		Sensor 2	Messwert	2.2.1.1.2*
		2.2.1.2*	Rohwert	
			Zellkonstante	
	Verschiedenes	Gehäusetemp.	2.2.2.1*	
	2.2.2*			
	EDI	Aktueller Strom	2.2.3.1*	
	2.2.3*	Aktuelle Spannung		
		Gesamtstrom		
		Gesamtdurchfluss		
		Letzter Wechsel		
Probe	ID Probe	2.3.1*		
2.3*	Probenfluss	Probenfluss	2.3.2.1*	
	2.3.2*	Rohwert		
	Probentemp.	Temp.1	2.3.3.1*	
	2.3.3*	(Pt1000)		
		Temp.2		
		(Pt1000)		
E/A-Zustände	Sammelstörkontakt	2.4.1*		
2.4*	Schaltausgang 1/2	2.4.2*		
	Schalteingang			
	Signalausgang 1/2			
Schnittstelle	Protokoll	2.5.1*		(nur mit RS485-
2.5*	Baudrate			Schnittstelle)

8.3. Wartung (Hauptmenü 3)

Simulation	Sammelstörkontakt	3.1.1*
3.1*	Schaltausgang 1	3.1.2*
	Schaltausgang 2	3.1.3*
	Signalausgang 1	3.1.4*
	Signalausgang 2	3.1.5*
EDI wechseln		
3.2*		
Ubr otollon	(Dotum) (Ubrzoit)	

*Menünummern

Uhr stellen 3.3*

(Datum), (Uhrzeit)

Betrieb (Hauptmenü 4) 8.4.

Sensoren	Filterzeitkonstante	4.1.1*		
4.10*	Haltezeit nach Kal.	4.1.2*		
Schaltkontakte	Sammelstörkontakt	Leitf. 1 (sc)	Alarm hoch	4.2.1.1.1*
4.2*	4.2.1*	4.2.1.1*	Alarm tief	4.2.1.1.25*
			Hysterese	4.2.1.1.35*
			Verzögerung	4.2.1.1.45*
		Leitf. 2 (cc)	Alarm hoch	4.2.1.2.1*
		4.2.1.2*	Alarm tief	4.2.1.2.25*
			Hysterese	4.2.1.2.35*
			Verzögerung	4.2.1.2.45*
	Schaltausgang 1/2	Parameter		
	4.2.2*/4.2.3*	Sollwert	4.2.x.200*	
		Hysterese	4.2.x.300*	
		Verzögerung	4.2.x.40*	
	Schalteingang	Aktiv	4.2.4.1*	
	4.2.4*	Signalausgänge	4.2.4.2*	
		Ausgänge/Regler	4.2.4.3*	
		Fehler	4.2.4.4*	
		Verzögerung	4.2.4.5*	
Logger	Logintervall	4.3.1*		
4.3*	Logger löschen	4.3.2*		
Anzeige	Bildschirm 1	Zeile 1	4.4.1.1*	
4.4*	4.4.1*	Zeile 2	4.4.1.2*	
		Zeile 3	4.4.1.3*	
	Bildschirm 2	Zeile 1	4.4.2.1*	
	4.4.2*	Zeile 2	4.4.2.2*	
		Zeile 3	4.4.2.3*	

8.5. Installation (Hauptmenü 5)

Sensoren	Verschiedenes	Berechnung	5.1.1.1*	*Menünummern
5.1*	5.1.1*	Masseinheit	5.1.1.2*	
	Sensorparameter	Sensor 1	Zellkonstante	5.1.2.1.1*
	5.1.2*	5.1.2.1*	Temp. Korr.	5.1.2.1.2*
			Kabellänge	5.1.2.1.3*
			Temp. Komp.	Котр.
			5.1.2.1.5*	5.1.2.1.5.1*
		Sensor 2	Zellkonstante	5.1.2.2.1*
		5.1.2.2*	Temp. Korr.	5.1.2.2.2*
			Kabellänge	5.1.2.2.3*
			Temp. Komp.	Котр.
			5.1.2.2.5*	5.1.2.2.5.1*
Signalausgänge	Signalausgang 1/2	Parameter	5.2.1.1/5.2.2.1*	
5.2*	5.2.1/5.2.2*	Stromschleife	5.2.1.2/5.2.2.2*	
		Funktion	5.2.1.3/5.2.2.3*	
		Skalierung	Bereich tief	5.2.x.40.10/11*
		5.2.x.40	Bereich hoch	5.2.x.40.20/21*
Schaltkontakte	Sammelstörkontakt	Leitfähigkeit	Leitf. 1 (sc)	Alarm hoch
5.3*	5.3.1*	5.3.1.1*	5.3.1.1.1*	Alarm tief
				Hysterese*
				Verzögerung
			Leitf. 2 (cc)	Alarm hoch
			5.3.1.1.2*	Alarm tief
				Hysterese*
				Verzögerung
		Probentemp.	Temp. 1	Alarm hoch
		5.3.1.2*	5.3.1.2.1*	Alarm tief
			Temp. 2	Alarm hoch
			5.3.1.2.2*	Alarm tief
		Gehäusetemp.	Alarm hoch	5.3.1.4.1*
		5.3.1.4*	Alarm tief	5.3.1.4.2*

	Schaltausgang 1/2	Funktion	5.3.2.1/5.3.3.1*	*Menünummern
	5.3.2/5.3.3*	Parameter	5.3.2.20/5.3.3.20*	
		Sollwert	5.3.2.300 / 5.3.3.30	1*
		Hysterese	5.3.2.400/5.3.3.40	1*
		Verzögerung	5.3.2.50/5.3.3.50*	
	Schalteingang	Aktiv	5.3.4.1*	
	5.3.4*	Signalausgänge	5.3.4.2*	
		Ausgänge/Regler	5.3.4.3*	
		Fehler	5.3.4.4*	
		Verzögerung	5.3.4.5*	
Verschiedenes	Sprache	5.4.1*		
5.4*	Werkseinstellung	5.4.2*		
	Firmware laden	5.4.3*		
	Passwort	Meldungen	5.4.4.1*	
	5.4.4*	Wartung	5.4.4.2*	
		Betrieb	5.4.4.3*	
		Installation	5.4.4.4*	
	ID Probe	5.4.5*		
	Überw. Signalausgang	5.4.6*		
Schnittstelle	Protokoll	5.5.1*		(nur mit RS485-
5.5*	Geräteadresse	5.5.21*		Schnittstelle)
	Baudrate	5.5.31*		
	Parität	5.5.41*		

9. Programmliste und Erläuterungen

1 Meldungen

1.1 Anliegende Fehler

1.1.5 Bietet eine Liste mit aktuellen Fehlern und Statuszuständen (aktiv, bestätigt). Wird ein aktiver Fehler bestätigt, wird der Sammelstörkontakt wieder aktiviert. Wird ein Fehler gelöscht, wird er in die Meldungsliste verschoben.

1.2 Wartungsliste

1.2.5 Enthält eine Liste der erforderlichen Wartungsarbeiten. Gelöschte Wartungsmeldungen werden in die Meldungsliste verschoben.

1.3 Meldungsliste

1.3.1 Anzeige des Fehlerverlaufs: Fehlercode, Datum und Uhrzeit des Problems sowie Status (aktiv, bestätigt, geklärt). Es werden 65 Fehler gespeichert. Anschliessend werden die ältesten Fehler gelöscht, um Speicherplatz freizugeben (Zirkularpuffer).

2 Diagnose

Im Modus «Diagnose» können Werte nur angezeigt, jedoch nicht geändert werden.

2.1 Identifikation

Bez.: Bezeichnung des Instruments **Version:** Firmware des Instruments (z. B. V6.22-07/18)

- 2.1.4 Werksprüfung: Datum der Prüfung von Instrument, Mainboard und Frontend
- 2.1.5 Betriebszeit: Jahre, Tage, Stunden, Minuten, Sekunden

2.2 Sensoren

- 2.2.1 Leitfähigkeit:
- 2.2.1.1 Sensor 1 zeigt: Messwert in µS Rohwert in µS Zellkonstante
- 2.2.1.2 Sensor 2 zeigt Messwert in µS Rohwert in µS Zellkonstante

2.2.2 Diverses:

2.2.2.1 *Gehäusetemp.:* aktuelle Temperatur in [°C] innerhalb des Messumformers.

2.2.3 EDI:

2.2.3.1 Aktueller Strom: Strom in mA, der dem EDI-Modul zugeführt wird. Aktuelle Spannung: resultierende Spannung in mV. Gesamtstrom: Menge der elektrischen Ladung in Ah seit dem letzten Austausch des EDI-Moduls. Gesamtdurchfluss: Menge des Probenwassers in L seit dem letzten Austausch des EDI-Moduls. Letzter Wechsel: Datum des letzten Wechsels.

2.3 Probe

- 2.3.1 *ID Probe:* zeigt die zugewiesene Probenidentifikation. Diese wird vom Bediener zur Kennzeichnung des Standorts der Probe festgelegt.
- 2.3.2 Probenfluss: Anzeige des aktuellen Flusses in [l/h] und des Rohwerts in [Hz]. Der Probenfluss muss über 5 l/h liegen.

2.3.3 Probentemp.:

2.3.3.1 *Temp. 1:* zeigt die aktuelle Probentemperatur an Sensor 1 in °C. (*Pt 1000*): zeigt die aktuelle Temperatur an Sensor 1 in Ohm. *Temp. 2:* zeigt die aktuelle Probentemperatur an Sensor 2 in °C. (*Pt 1000*): zeigt die aktuelle Temperatur an Sensor 2 in Ohm.

2.4 E/A-Zustände

Zeigt den aktuellen Status aller Ein- und Ausgänge.

2.4.1/2.4.2 Sammelstörkontakt: aktiv oder inaktiv Schaltkontakt 1/2: aktiv oder inaktiv Schalteingang: offen oder geschlossen Signalausgang 1/2: aktuelle Stromstärke in mA Signalausgang 3 (sofern Option installiert):

2.5 Schnittstelle

Nur verfügbar, wenn optionale Schnittstelle installiert wurde. Überprüfung der programmierten Kommunikationseinstellungen.

3 Wartung

3.1 Simulation

Um einen Wert oder einen Schaltzustand zu simulieren, den

- Sammelstörkontakt
- Schaltausgang 1/2
- Signalausgang 1/2

mit der Taste [____] oder [____] auswählen.

[Enter] drücken.

Den Wert oder Zustand des ausgewählten Objekts mit den Tasten

[Enter] drücken.

⇒ Der Wert oder Zustand wird mit vom Signalausgang oder Schaltausgang simuliert.

Sammelstörkontakt: Schaltkontakt 1/2: Signalausgang 1/2: Signalausgang 3 (sofern Option installiert): aktiv oder inaktiv aktiv oder inaktiv eingestellte Stromstärke in mA eingestellte Stromstärke in mA

Werden 20 min lang keine Tasten gedrückt, schaltet das Instrument wieder in den Normalmodus. Mit Verlassen des Menüs werden alle simulierten Werte zurückgesetzt.

3.2 EDI wechseln

Siehe Ersatz des EDI-Moduls, S. 52.

3.3 Zeit einstellen

Stellen Sie Datum und Uhrzeit ein.

4 Betrieb

4.1 Sensoren

- 4.1.1 Filterzeitkonstante: zum Abflachen von Störsignalen. Je grösser die Filterzeitkonstante, desto langsamer reagiert das Instrument auf geänderte Messwerte. Bereich: 5–300 Sec
- 4.1.2 Haltezeit n. Kal.: Verzögerung, die die Stabilisierung des Instruments nach der Kalibrierung ermöglicht. Während der Kalibrierung plus Verzögerungszeit werden die Signalausgänge (auf dem letzten Wert) eingefroren, Alarm- und Grenzwerte sind nicht aktiv. Bereich: 0–6000 Sec

4.2 Schaltkontakte

Siehe Schaltkontakte, S. 24.

4.3 Logger

Das Gerät verfügt über einen internen Logger. Die Logger-Daten können auf einen PC über einen USB-Stick kopiert werden, falls die optionale USB-Schnittstelle installiert ist. Der Logger kann ca. 1500 Datensätze speichern. Die Datensätze bestehen aus: Datum, Zeit, Alarmen, Messwert, Messwert unkompensiert, Temperatur, Durchfluss. Bereich: 1 Sekunde – 1 Stunde

4.3.1 *Logintervall:* Wählen Sie ein passendes Logintervall aus. In der Tabelle unten erhalten Sie Angaben zur maximalen Protokolldauer. Ist der Logpuffer voll, wird der älteste Datensatz gelöscht, so dass Platz für den neuesten entsteht (Zirkularpuffer).

Intervall	1 s	5 s	1 min	5 min	10 min	30 min	1 h
Zeit	25 min	2 h	25 h	5 Tage	10 Tage	31 Tage	62 Tage

- 4.3.2 *Logger löschen:* Wenn mit **Ja** bestätigt, werden alle Logger-Daten gelöscht. Es wird eine neue Datenserie gestartet.
- 4.3.3 USB-Stick entfernen: Mit dieser Funktion werden alle Loggerdaten auf den USB-Stick kopiert und dieser danach deaktiviert. Nur verfügbar, wenn die optionale USB-Schnittstelle installiert wurde.

4.4 Anzeige

Prozesswerte werden auf zwei Bildschimen angezeigt. Das Umschalten erfolgt mit der Taste [____]. Auf jedem Bildschirm werden maximal 3 Prozesswerte angezeigt.

- 4.4.1 Bildschirm 1
- 4.4.1.1 Zeile 1
- 4.4.1.2 Zeile 2
- 4.4.1.3 Zeile 3

Mögliche Einstellungen für alle Zeilen sind:

- Keine
- Leitf. 1 (sc)
- Leitf. 2 (cc)
- Differenz
- pH (wenn <Berechnung> = Ja)
- Ammoniak (hängt von den Einstellungen unter <Sensorparameter>/<Temp. Komp.> ab)

4.4.2 Bildschirm 2 Wie Bildschirm 1.

5 Installation

5.1 Sensoren

5.1.1 Verschiedenes:

- 5.1.1.1 *Berechnung:* «Ja» wählen, wenn pH-Wert und Ammoniakkonzentration berechnet werden sollen. pH- und Ammoniakwert werden nun auf Bildschirm 1 oder 2, über die Signalausgänge sowie als Alarmoder Grenzwerte ausgegeben.
- 5.1.1.2 *Masseinheit:* verfügbare Optionen sind µS/cm und µS/m.

5.1.2 Sensorparameter:

5.1.2.1 Sensor 1

5.1.2.1.1 *Zellkonstante:* auf dem Sensoretikett aufgedruckte Zellkonstante eingeben.

Bereich: 0.0300 cm⁻¹ bis 0.0600 cm⁻¹

- 5.1.2.1.2 *Temp. Korr:* auf dem Sensoretikett aufgedruckte Temperaturkorrektur eingeben. Bereich: -1 °C bis 1 °C
- 5.1.2.1.3 *Kabellänge:* Kabellänge eingeben. Falls die Durchflusszelle am Monitor installiert ist, Kabellänge auf 0,0 m setzen. Bereich: 0.0 m bis 30.0 m

5.1.2.1.5 Temp. Komp.

- 5.1.2.1.5.1 Komp.: verfügbare Temperaturmodelle:
 - Starke Säuren (Niemals starke Säuren f
 ür Sensor 1 auswählen!)
 - Starke Basen
 - Ammoniak
 - Morpholin
 - Ethanolamin
 - Neutrale Salze
 - Reinstwasser
 - Koeffizient
 - Keine

5.1.2.2 Sensor 2

5.1.2.2.1 *Zellkonstante:* auf dem Sensoretikett aufgedruckte Zellkonstante eingeben.

Bereich: 0.0300 cm⁻¹ bis 0.0600 cm⁻¹

5.1.2.2.2 *Temp. Korr:* auf dem Sensoretikett aufgedruckte Temperaturkorrektur eingeben.

Bereich: -1 °C bis 1 °C

5.1.2.2.3 *Kabellänge:* Kabellänge eingeben. Falls die Durchflusszelle am Monitor installiert ist, Kabellänge auf 0,0 m setzen. Bereich: 0.0 m bis 30.0 m

5.1.2.2.5 Temp. Komp.

5.1.2.2.5.1 *Komp.:* verfügbare Temperaturmodelle: • Starke Säuren

5.2 Signalausgänge

Hinweis: Die Navigation in den Menüs <Signalausgang 1> und <Signalausgang 2> ist identisch. Zur Vereinfachung werden nachfolgend nur die Menünummern von Signalausgang 1 verwendet.

- **5.2.1** Signalausgang 1: Weisen Sie jedem Signalausgang Prozesswert, Stromschleifenbereich und Funktion zu.
- 5.2.1.1 *Parameter:* Weisen Sie dem Signalausgang einen der Prozesswerte zu. Verfügbare Werte:
 - Leitf. 1 (cc)
 - Leitf. 2 (sc)
 - Temp. 1
 - Temp. 2
 - Differenz
 - Probenfluss
 - ◆ pH
 - Ammoniak
- 5.2.1.2 Stromschleife: Wählen Sie den aktuellen Bereich des Signalausgangs. Stellen Sie sicher, dass das angeschlossene Gerät mit demselben Strombereich arbeitet. Verfügbare Bereiche: 0–20 mA oder 4–20 mA
- 5.2.1.3 *Funktion*: Legen Sie fest, ob der Signalausgang zur Übertragung von Prozesswerten oder zur Ansteuerung von Reglereinheiten verwendet wird. Verfügbar sind:
 - Iinear, bilinear, logarithmisch oder hyperbolisch f
 ür Prozesswerte. Siehe Als Prozesswerte, S. 66.
 - Regler auf-/abwärts für die Controller. Siehe Als Steuerausgang, S. 68.

- X Messwert (logarithmisch)
- * Die hyperbolische Skalierung kann in speziellen Fällen als Alternative zur logarithmischen Skalierung verwendet werden. Wenden Sie sich an Swan, um Details zu dieser Skalierungsmethode zu erfahren.

5.2.1.40	Skalierung : Anfangs- und Endpunkt (hoher/niedriger Bereich) der li- nearen bzw. logarithmischen Skala und dazu den Mittelpunkt der bili- nearen Skala eingeben.
5.2.1.40.10 5.2.1.40.20	Parameter Leitf. 1 (sc): Bereich tief: 0.000 –3000 μS Bereich hoch: 0.000–3000 μS
5.2.1.40.11 5.2.1.40.21	Parameter Leitf. 2 (cc): Bereich tief: 0.000–3000 μS Bereich hoch: 0.000–3000 μS
5.2.1.40.13 5.2.1.40.23	Parameter Temp. 1 Bereich tief: -25 bis +270 °C Bereich hoch: -25 bis +270 °C
5.2.1.40.14 5.2.1.40.24	Parameter Temp. 2 Bereich tief: -25 bis +270 °C Bereich hoch: -25 bis +270 °C
5.2.1.40.16 5.2.1.40.26	Parameter Differenz Bereich tief: $0.000-3000 \ \mu S$ Bereich hoch: $0.000-3000 \ \mu S$
5.2.1.40.17 5.2.1.40.27	Parameter Probenfluss Bereich tief: 0.0–20 I/h Bereich hoch: 0.0–20 I/h
5.2.1.40.18 5.2.1.40.28	Parameter pH Bereich tief: 0.00–14.00 pH Bereich hoch: 0.00–14.00 pH
5.2.1.40.19 5.2.1.40.29	Parameter Ammoniak Bereich tief: 0.00–500 ppm Bereich hoch: 0.00–500 ppm

67 🗖

Als Steuerausgang Signalausgänge können zur Ansteuerung von Reglereinheiten verwendet werden. Wir unterscheiden dabei zwischen unterschiedlichen Typen:

 P-Controller: Die Controller-Aktion ist proportional zur Abweichung vom Sollwert. Der Controller wird durch das P-Band gekennzeichnet. Im Steady-State wird der Sollwert niemals erreicht. Die Abweichung wird als Steady-State-Fehler bezeichnet.

Parameter: Sollwert, P-Band

 PI-Controller: Die Kombination aus einem P-Controller mit einem I-Controller minimiert den Steady-State-Fehler. Wird die Nachstellzeit auf «Null» gesetzt, wird der I-Controller abgeschaltet.

Parameter: Sollwert, P-Band, Nachstellzeit

- PD-Controller: Die Kombination aus einem P-Controller mit einem D-Controller minimiert die Reaktionszeit bei einer schnellen Änderung des Prozesswerts. Wird die Vorhaltezeit auf «Null» gesetzt, wird der D-Controller abgeschaltet.
 Parameter: Sollwert, P-Band, Vorhaltezeit
- PID-Controller: Die Kombination aus einem P-, I- und D-Controller ermöglicht eine angemessene Kontrolle des Prozesses. Parameter: Sollwert, P-Band, Nachstellzeit, Vorhaltezeit

Ziegler-Nichols-Methode zur Optimierung eines PID-Controllers: **Parameter:** Sollwert, P-Band, Nachstellzeit, Vorhaltezeit

- A Antwort auf maximale Steuerausgabe Xp = 1.2/a
- B
 Tangente am Wendepunkt
 Tn = 2L

 X
 Zeit
 Tv = 1/2

Der Schnittpunkt der Tangente mit der entsprechenden Achse führt zu den Parametern a und L.

Näheres zum Anschliessen und Programmieren findet sich im Handbuch zur jeweiligen Steuereinheit.

Regler auf-/abwärts

	Sollwert: benutzerdefinierter Prozesswert für den ausgewählten Parameter.
	<i>P-Band:</i> Bereich unterhalb (Aufwärtstaste) oder oberhalb (Abwärtstaste) des Sollwerts, wobei die Dosierungsintensität von 100 bis auf 0% reduziert werden kann, um den Sollwert überschreitungsfrei zu erreichen.
5.2.1.40	Regelparameter: Wenn Parameter: Leitf. 1 (sc)
5.2.1.40.10	Sollwert Bereich: 0.000–3000 μS
5.2.1.40.20	P-Band: Bereich: 0.000–3000 μS
5.2.1.40	Regelparameter: Wenn Parameter: Leitf. 2 (cc)
5.2.1.40.11	Sollwert Bereich: 0.000–3000 μS
5.2.1.40.21	P-Band: Bereich: 0.000–3000 μS
5.2.1.40	Regelparameter: Wenn Parameter = Temp. 1
5.2.1.40.13	Sollwert Bereich: -25 bis +270 °C
5.2.1.40.23	P-Band: Bereich: -25 bis +270 °C
5.2.1.40	Regelparameter: Wenn Parameter = Temp. 2
5.2.1.40.14	Sollwert Bereich: -25 bis +270 °C
5.2.1.40.24	P-Band: Bereich: -25 bis +270 °C
5.2.1.40	Regelparameter: wenn Parameter = Differenz
5.2.1.40.16	Sollwert Bereich: 0.000–3000 μS
5.2.1.40.26	P-Band: Bereich: 0.000–3000 μS
5.2.1.40	Regelparameter: wenn Parameter = Probenfluss
5.2.1.40.17	Sollwert Bereich: 0.0–20 I/h
5.2.1.40.27	P-Band: Bereich: 0.0–20 I/h

5.2.1.40	Regelparameter: wenn Parameter = pH
5.2.1.40.18	Sollwert Bereich: 0.00–14 pH
5.2.1.40.28	P-Band: Bereich: 0.00–14 pH
5.2.1.40	Regelparameter: Wenn Parameter = Ammoniak
5.2.1.40.19	Sollwert: Bereich: 0.00–500 ppm
5.2.1.40.29	P-Band: Bereich: 0.00–500 ppm
5.2.1.40.3	<i>Nachstellzeit:</i> die Zeit, bis die Schrittreaktion eines einzelnen I-Controllers denselben Wert erreicht, der plötzlich von einem P-Controller erreicht wird. Bereich: 0–9000 Sec
5.2.1.40.4	<i>Vorhaltezeit:</i> die Zeit, bis die Anstiegsreaktion eines einzelnen P-Controllers denselben Wert erreicht, der plötzlich von einem D-Controller erreicht wird. Bereich: 0–9000 Sec
5.2.1.40.5	Ueberwachungszeit: Läuft eine Controller-Aktion (Dosierintensität) während eines definierten Zeitraums konstant mit mehr als 90% und erreicht der Prozesswert nicht den Sollwert, wird der Dosierprozess aus Sicherheitsgründen gestoppt. Bereich: 0–720 min

5.3 Schaltkontakte

5.3.1 Sammelstörkontakt: Der Sammelstörkontakt wird als kumulativer Fehlerindikator verwendet. Unter normalen Betriebsbedingungen ist der Kontakt aktiviert.

Der Kontakt wird unter folgenden Bedingungen deaktiviert:

- Stromausfall
- Feststellung von Systemfehlern wie defekte Sensoren oder elektronische Teile
- Hohe Gehäusetemperatur
- Prozesswerte ausserhalb der programmierten Bereiche

Alarmschwellenwerte, Hysteresewerte und Verzögerungszeiten für folgende Parameter programmieren:

- Leitf. 1 (sc)
- Leitf. 2 (cc)
- ◆ pH
- Ammoniak
- Probentemp. 1
- Probentemp. 2
- Gehäusetemp. niedrig

5.3.1.1	Leitfähigkeit
5.3.1.1.1	Leitf. 1 (sc)
5.3.1.1.1.1	Alarm hoch: Steigt der gemessene Wert über den Wert des Parameters «Alarm hoch», wird der Sammelstörkontakt aktiviert und in der Meldungsliste wird E001 angezeigt. Bereich: $0.00-3000 \ \mu$ S
5.3.1.1.1.25	Alarm tief: Fällt der gemessene Wert unter den Wert des Parameters «Alarm tief», wird der Sammelstörkontakt aktiviert und in der Mel- dungsliste wird E002 angezeigt. Bereich: $0.00-3000 \ \mu$ S
5.3.1.1.1.35	<i>Hysterese:</i> Innerhalb des Hysteresebereichs reagiert der Schaltaus- gang nicht. Dies verhindert eine Beschädigung der Schaltkontakte, wenn der Messwert um den Alarmwert schwankt. Bereich: $0.000-3000 \ \mu S$
5.3.1.1.1.45	Verzögerung: Zeit, für die die Aktivierung des Alarms verzögert wird, wenn der Messwert über/unter dem programmierten Alarm liegt. Bereich: 0–28 800 Sec
5.3.1.1.2	Cond. 2 (cc)
5.3.1.1.2.1	Alarm hoch: Steigt der gemessene Wert über den Wert des Parameters «Alarm hoch», wird der Sammelstörkontakt aktiviert und in der Meldungsliste wird E003 angezeigt. Bereich: $0.00-3000 \ \mu$ S
5.3.1.1.2.25	Alarm tief: Fällt der gemessene Wert unter den Wert des Parameters «Alarm tief», wird der Sammelstörkontakt aktiviert und in der Mel- dungsliste wird E004 angezeigt. Bereich: $0.00-3000 \ \mu$ S
5.3.1.1.2.35	<i>Hysterese:</i> Innerhalb des Hysteresebereichs reagiert der Schaltaus- gang nicht. Dies verhindert eine Beschädigung der Schaltkontakte, wenn der Messwert um den Alarmwert schwankt. Bereich: $0.000-3000 \ \mu S$
5.3.1.1.2.45	Verzögerung: Zeit, für die die Aktivierung des Alarms verzögert wird, wenn der Messwert über/unter dem programmierten Alarm liegt. Bereich: 0–28800 Sec
5.3.1.1.4	pH (wenn <berechnung> = Ja)</berechnung>
5.3.1.1.4.1	Alarm hoch: Steigt der gemessene Wert über den Wert des Parame- ters «Alarm hoch», wird der Sammelstörkontakt aktiviert und in der Meldungsliste wird E033 angezeigt. Bereich: 0.00–14 pH
5.3.1.1.4.25	<i>Alarm tief:</i> Fällt der gemessene Wert unter den Wert des Parameters «Alarm tief», wird der Sammelstörkontakt aktiviert und in der Mel- dungsliste wird E034 angezeigt. Bereich: 0.00–14 pH
5.3.1.1.4.35	<i>Hysterese:</i> Innerhalb des Hysteresebereichs reagiert der Schaltaus- gang nicht. Dies verhindert eine Beschädigung der Schaltkontakte, wenn der Messwert um den Alarmwert schwankt. Bereich: 0.00–14 pH

71 💻

- 5.3.1.1.4.45 *Verzögerung:* Zeit, für die die Aktivierung des Alarms verzögert wird, wenn der Messwert über/unter dem programmierten Alarm liegt. Bereich: 0–28800 Sec
 - 5.3.1.1.5 Ammoniak (wenn <Berechnung> = Ja)
- 5.3.1.1.5.1 *Alarm hoch:* Steigt der gemessene Wert über den Wert des Parameters «Alarm hoch», wird der Sammelstörkontakt aktiviert und in der Meldungsliste wird E035 angezeigt. Bereich: 0.00–500 ppm
- 5.3.1.1.5.25 *Alarm tief:* Fällt der gemessene Wert unter den Wert des Parameters «Alarm tief», wird der Sammelstörkontakt aktiviert und in der Meldungsliste wird E036 angezeigt. Bereich: 0.00–500 ppm
- 5.3.1.1.5.35 *Hysterese:* Innerhalb des Hysteresebereichs reagiert der Schaltausgang nicht. Dies verhindert eine Beschädigung der Schaltkontakte, wenn der Messwert um den Alarmwert schwankt. Bereich: 0.00–500 ppm
- 5.3.1.1.5.45 *Verzögerung:* Zeit, für die die Aktivierung des Alarms verzögert wird, wenn der Messwert über/unter dem programmierten Alarm liegt. Bereich: 0–28800 Sec

5.3.1.2 Probentemp.

5.3.1.2.1 Temp. 1

- 5.3.1.2.1.1 *Alarm hoch:* Steigt der gemessene Wert über den Wert des Parameters «Alarm hoch», wird der Sammelstörkontakt aktiviert und in der Meldungsliste wird E007 angezeigt. Bereich: 30–200 °C
- 5.3.1.2.1.25 *Alarm tief:* Fällt der gemessene Wert unter den Wert des Parameters «Alarm tief», wird der Sammelstörkontakt aktiviert und in der Meldungsliste wird E008 angezeigt. Bereich: -10 bis +20 °C

5.3.1.2.2 Temp. 2

- 5.3.1.2.2.1 Alarm hoch: Steigt der gemessene Wert über den Wert des Parameters «Alarm hoch», wird der Sammelstörkontakt aktiviert und in der Meldungsliste wird E037 angezeigt. Bereich: 30–200 °C
- 5.3.1.2.2.25 Alarm tief: Fällt der gemessene Wert unter den Wert des Parameters «Alarm tief», wird der Sammelstörkontakt aktiviert und in der Meldungsliste wird E038 angezeigt. Bereich: -10 bis +20 °C

5.3.1.3 Gehäusetemp.

5.3.1.3.1 Alarm hoch: Wert «Alarm hoch» für die Temperatur des Elektronikgehäuses festlegen. Übersteigt der Messwert den programmierten Parameter, wird E013 angezeigt. Bereich: 30–75 °C

- 5.3.1.3.2 *Alarm tief:* Wert «Alarm tief» für die Temperatur des Elektronikgehäuses festlegen. Fällt die Temperatur unter den programmierten Parameter, wird E014 angezeigt. Bereich: -10 bis +20 °C
- 5.3.2 & 5.3.3 Schaltausgang 1 und 2: Die Schaltausgänge können mit einem Jumper als «normalerweise offen» oder «normalerweise geschlossen» konfiguriert werden, siehe Schaltausgang 1 und 2, S. 25. Die Funktion von Schaltkontakt 1 oder 2 wird vom Benutzer definiert:

Hinweis: Die Navigation in den Menüs <Schaltausgang 1> und <Schaltausgang 2> ist identisch. Aus Einfachheitsgründen werden nachfolgend nur die Menünummern von Schaltausgang 1 verwendet.

- 1 Zunächst eine der folgenden Funktionen wählen:
 - Oberer/unterer Grenzwert
 - Regler auf-/abwärts
 - Timer
 - Feldbus
- 2 Geben Sie dann die erforderlichen Daten je nach gewählter Funktion ein. Diese Werte können auch über Menü 4.2 Schaltkontakte, S. 63 konfiguriert werden.
- 5.3.2.1 Funktion = oberer/unterer Grenzwert

Werden die Schaltausgänge als Schalter für obere/untere Grenzwerte verwendet, sind folgende Variablen zu programmieren:

- 5.3.2.20 Parameter: Prozesswert wählen
- 5.3.2.300 *Sollwert:* Steigt der gemessene Wert über bzw. fällt er unter den Sollwert, schliesst der Schaltkontakt.

Parameter	Bereich
Leitf. 1 (sc)	0–3000 μS
Leitf. 2 (cc)	0–3000 μS
Temp. 1	-25 bis +270 °C
Temp. 2	-25 bis +270 °C
Differenz	0–3000 μS
Probenfluss	0–20 l/h
pН	0–14 pH
Ammoniak	0–500 ppm

5.3.2.400 *Hysterese*: Innerhalb des Hysteresebereichs reagiert der Schaltausgang nicht. Dies verhindert eine Beschädigung der Schaltkontakte, wenn der Messwert um den Alarmwert schwankt.

Parameter	Bereich
Leitf. 1 (sc)	0–3000 μS
Leitf. 2 (cc)	0–3000 μS
Temp. 1	0–100 °C
Temp. 2	0–100 °C
Differenz	0–3000 μS
Probenfluss	0–20 l/h
рН	0–14 pH
Ammoniak	0–500 ppm

- 5.3.2.50 *Verzögerung:* Zeit, für die die Aktivierung des Alarms verzögert wird, wenn der Messwert über/unter dem programmierten Alarm liegt. Bereich. 0–600 Sec
- 5.3.2.1 Funktion = Regler auf-/abwärts

Die Schaltausgänge können verwendet werden, um Steuereinheiten wie Magnetventile, Membran-Dosierpumpen oder Stellmotoren anzusteuern. Zum Ansteuern eines Stellmotors werden beide Schaltausgänge benötigt, einer zum Öffnen und einer zum Schliessen.

- 5.3.2.22 Parameter: Wählen Sie einen der folgenden Prozesswerte.
 - Leitf. 1 (sc)
 - Leitf. 2 (cc)
 - Temp. 1
 - Temp. 2
 - Differenz
 - Probenfluss
 - ◆ pH
 - Ammoniak
- 5.3.2.32 Einstellungen: das jeweilige Stellglied wählen:
 - Zeitproportional
 - Frequenz
 - Stellmotor
- 5.3.2.32.1 Stellglied = Zeitproportional

Beispiele für Messgeräte, die zeitproportional angesteuert werden: Magnetventile, Schlauchpumpen.

Die Dosierung wird über die Funktionsdauer geregelt.

5.3.2.32.20	<i>Zyklusdauer:</i> Dauer eines Kontrollzyklus (Wechsel AN/AUS). Bereich: 0–600 Sec
5.3.2.32.30	<i>Ansprechzeit:</i> minimale Dauer, die das Messgerät zur Reaktion benötigt. Bereich: 0–240 Sec
5.3.2.32.4	Regelparameter Bereich für jeden Parameter wie unter 5.2.1.40, S. 69.
5.3.2.32.1	Stellglied = Frequenz
5.3.2.32.21	Beispiele für Messgeräte, die per Impulsfrequenz gesteuert werden, sind die klassischen Membranpumpen mit potenzialfreiem Auslöse- eingang. Die Dosierung wird über die Wiederholungs- geschwindigkeit der Dosierstösse geregelt. <i>Impulsfrequenz:</i> max. Anzahl Impulse pro Minute, auf die das Gerät reagieren kann. Bereich: 20–300/min
5.3.2.32.31	Regelparameter
	Bereich für jeden Parameter wie unter 5.2.1.40, S. 69.
5.3.2.32.1	Stellglied = Stellmotor
	Die Dosierung wird über die Position eines motorbetriebenen Misch- ventils geregelt.
5.3.2.32.22	<i>Laufzeit:</i> Zeit, die zur Öffnung eines vollständig geschlossenen Ven- tils benötigt wird. Bereich: 5–300 Sec
5.3.2.32.32	<i>Nullzone:</i> minimale Reaktionszeit in % der Laufzeit. Ist die ange- forderte Dosiermenge kleiner als die Reaktionszeit, erfolgt keine Än- derung. Bereich: 1–20%
5.3.2.32.4	Regelparameter Bereich für jeden Parameter wie unter <u>5.2.1.40</u> , <u>S. 69</u> .
5.3.2.1	Funktion = Timer
	Der Schaltausgang wird wiederholt in Abhängigkeit vom program- mierten Zeitplan aktiviert.
5.3.2.24	Betriebsart: verfügbar sind Intervall, Täglich und Wöchentlich.
5.3.2.340	Intervall/Startzeit/Kalender: abhängig von den Optionen der Be- triebsart.
5.3.2.44	<i>Laufzeit:</i> Zeit, für die der Schaltausgang aktiviert bleibt. Bereich: 5–32'400 Sec
5.3.2.54	Verzögerung: Laufzeit plus Verzögerungszeit, in der die Signal- und Regelungsausgänge im unten programmierten Betriebsmodus ge- halten werden. Bereich: 0–6'000 Sec

5.3.2.6	Signalausgänge: Verhalten der Signalausgänge beim Schliessen
	des Relais auswählen.
	Verfügbare Werte: forts., halten, aus

- 5.3.2.7 *Ausgänge/Regler:* Verhalten der Regelungsausgänge beim Schliessen des Relais auswählen. Verfügbare Werte: forts., halten, aus.
- 5.3.2.1 Funktion = Feldbus

Der Schaltausgang wird per Profibus gesteuert. Es sind keine weiteren Parameter notwendig.

- **5.3.4** Schalteingang: Die Funktionen der Schalt- und Signalausgänge können je nach Position des Eingangskontakts definiert werden, d. h. keine Funktion, geschlossen oder offen.
- 5.3.4.1 *Aktiv:* Definieren Sie, wann der Schalteingang aktiv sein soll:

Nein:	Der Schalteingang ist nie aktiv	Ι.

Wenn geschlos-	Der Schalteingang ist aktiv, wenn der Eingangs-
sen:	schaltkontakt geschlossen ist.
Wenn offen:	Der Schalteingang ist aktiv, wenn der Eingangs-

```
schaltkontakt offen ist.
```

- 5.3.4.2 *Signalausgänge:* Wählen Sie den Betriebsmodus der Signalausgänge bei aktivem Schaltkontakt:
 - *Fortfahren:* Die Signalausgänge geben weiterhin den Messwert aus.
 - Halten: Die Signalausgänge geben den letzten gültigen Messwert aus. Die Messung wird unterbrochen. Es werden nur schwerwiegende Fehler angezeigt.
 - Aus: Auf 0 bzw. 4 mA eingestellt. Es werden nur schwerwiegende Fehler angezeigt.
- 5.3.4.3 Ausgänge/Regler: (Schaltkontakt oder Signalausgang):
 - *Fortfahren:* Der Controller arbeitet normal weiter.
 - Halten: Der Controller arbeitet mit dem letzten gültigen Wert weiter.
 - Aus: Der Controller wird ausgeschaltet.

- 5.3.4.4 *Fehler:*
 - Nein: Es wird keine Meldung in der Liste der aktuellen Fehler angezeigt und der Sammelstörkontakt wird bei aktivem Schalteingang nicht geschlossen. Meldung E024 ist auf der Meldungs-Liste gespeichert.
 - Ja: Meldung E024 wird ausgegeben und in der Liste gespeichert. Der Sammelstörkontakt wird bei aktivem Schalteingang geschlossen.
- 5.3.4.5 *Verzögerung*: Wartezeit für das Instrument ab Deaktivierung des Schalteingangs bis zur Wiederaufnahme des Normalbetriebs. Bereich: 0–6000 Sec

5.4 Verschiedenes

- 5.4.1 *Sprache:* Legen Sie die gewünschte Sprache fest. Mögliche Einstellungen: Deutsch/Englisch/Französisch/Spanisch
- 5.4.2 *Werkseinstellung:* Für das Zurücketzen des Instruments auf die Werkseinstellungen gibt es drei Möglichkeiten:
 - Kalibrierung: setzt die Kalibrierungswerte auf die Werkseinstellung zurück. Alle anderen Werte bleiben gespeichert.
 - Teilweise: Die Kommunikationsparameter bleiben gespeichert. Alle anderen Werte werden auf die Werkseinstellung zurückgesetzt.
 - Vollständig: setzt alle Werte einschliesslich der Kommunikationsparameter zurück.
- 5.4.3 *Firmware laden:* Die Aktualisierung der Firmware sollte nur von geschulten Servicemitarbeitern durchgeführt werden.
- 5.4.4 Zugriff: Legen Sie ein Passwort fest, das nicht «0000» ist, um den unberechtigten Zugriff auf die Menüs Meldungen, Wartung, Betrieb und Installation zu verhindern. Jedes Menü kann durch ein eigenes Passwort geschützt werden. Wenn Sie die Passwörter vergessen haben, wenden Sie sich an den nächsten SWAN-Vertreter.
- 5.4.5 *ID Probe:* Identifizieren Sie den Prozesswert mit einem sinnvollen Text, z. B. der KKS-Nummer.
- 5.4.6 *Überwachung Signalausgang:* Definieren, ob Meldung E028 bei einer Leitungsunterbrechung an Signalausgang 1 oder 2 angezeigt werden soll.

<Ja> oder <Nein> wählen.

5.5 Schnittstelle

Wählen Sie eines der folgenden Kommunikationsprotokolle. Je nach Auswahl müssen verschiedene Parameter definiert werden.

5.5.1	Protokoll:	Profibus
-------	------------	----------

- 5.5.20 Geräteadresse: Bereich: 0–126
- 5.5.30 ID-Nr.: Bereich: Analysegeräte; Hersteller; Multivariabel
- 5.5.40 Lokale Bedienung: Bereich: Freigegeben, Gesperrt
 - 5.5.1 Protokoll: Modbus RTU
- 5.5.21 Geräteadresse: Bereich: 0–126
- 5.5.31 Baudrate: Bereich: 1200–115200 Baud
- 5.5.41 Parität: Bereich: keine, gerade, ungerade
- 5.5.1 *Protokoll:* USB-Stick Wird nur angezeigt, wenn eine USB-Schnittstelle installiert ist (keine andere Auswahl möglich).
- 5.5.1 Protokoll: HART
- 5.5.24 Geräteadresse: 0-63

10. Werkseinstellungen

Betrieb: Filterzeitkonst.: 20 s Sensoren: Haltezeit n. Kal: 0 s Schaltkontakte Schaltausgang 1/2wie in Installation Schalteingang......wie in Installation Logger Logger löschen: nein Bild 1 und 2: Zeile 1: Leitf. 1(sc) Anzeige: Bild 1 und 2; Zeile 2: Leitf. 2(cc) Installation: Sensoren Verschiedenes; Berechnung: nein Sensorparameter; Sensor 1 und 2;Zellkonstante 0.0415 cm⁻¹ Sensorparameter; Sensor 1 und 2; Temp. korr...... 0.00 °C Sensorparameter; Sensor 1 und 2; Kabellänge...... 0.0 m Sensorparameter; Sensor 1; Temp. komp.; Komp:..... Amoniak Sensorparameter; Sensor 2; Temp. komp.; Komp:..... Starke Säuren Parameter: Leitf. 1(sc) Signalausgang 1 Funktion: linear Parameter: Leitf. 2(cc) Signalausgang 2 Funktion: linear Skalierung: Skalenanfang:0.000 µS Leitfähigkeit; Leitf 1 (sc) und Leitf 2 (cc): Sammelstörkontakt: Alarm teif:.....0.000 uS Verzögerung: 5 s Probentemp: (Temp. 1 und Temp. 2) Alarm tief:.....0 °C Gehäusetemp. Alarm tief: 0 °C

Schaltaus	gang
-----------	------

1/2

Funktion:	oberer Grenzwert
Parameter: Schaltausg. 1: Leitf. 1 (s	c), Schaltausg. 2: Leitf. 2 (cc)
Sollwert:	
Hysterese:	
Verzögerung:	
5 5	

Wenn Funktion = Control Aufw. oder Abw. Regler:

Parameter: Schaltausg. 1: Leitf. 1 (sc), Schaltaus	g. 2: Leitf. 2 (cc)
Einstellungen: Stellglied:	Frequenz
Einstellungen: Pulsfrequenz:	120/min
Einstellungen: Regelarameter: Sollwert:	1000 µS
Einstellungen: Regelarameter: P-band:	10 µS
Einstellungen: Regelarameter: Nachstellzeit:	0 s
Einstellungen: Regelarameter: Vorhaltezeit:	0 s
Einstellungen: Regelarameter: Überwachungszeit	:0 min
Einstellungen: Stellglied:	Zeitproportional
Zykluszeit:	60 s
Ansprechzeit:	10 s
Einstellungen: Stellglied	Stellmotor
Laufzeit:	60 s
Neutrale Zone:	5%

Wenn Funktion = Zeitschaltuhr:

Betriebsart:	Intervall
Intervall:	1 min
Betriebsart:	täglich
Startzeit:	
Aktivzeit:	10 s
Verzögerung:	5 s
Signalausgänge:	fortfahren
Ausgänge/Regler:	fortfahren

AMI CACE Werkseinstellungen

Schalteingang:	Aktiv Signalausgänge	wenn geschlossen halten
	Ausgänge/Regler Störung Verzögerung	aus nein 10 s
Diverses	Sprache: Werkeinstellung: Firmware Laden: Passwort: ID Probe: Überwachung Signalausgang	Englisch nein für alle Betriebsarten 0000 fin nein

AMI CACE Index

11. Index

Α

Aktuatoren							26
Anwendung							10
Anwendungsbereich	•	•	•	•	•	•	10

С

•																
Checkliste	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17

Е

EDI-Modul																13
Einlaufzeit																17
Einrichten.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	30

F

-											
Fluidik .	•					•	•		•	13	3

Н

HART .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	29	
--------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----	--

Κ

Kabelstärke					20
Kationenleitfähigkeit.					11
Klemmen				22,	24

Μ

Messprinzip	11
Modbus	28
Montageanforderungen	18
Montieren	
Instrumententafel	18

Ρ

Probenanforderungen.								14
Profibus	•	•	•	•	•	2	8-	-29

R

ĸ		
Reinigen		
Sensor		37
S		
Sammelstörkontakt	11,	24
Schaltausgänge		10
Schalteingang	11,	24
Schnittstelle		
HART		29
Modbus		28
Profibus		28
USB		29
Sensorparameter		30
Sicherheitsfunktionen		11
Signalausgänge	10,	27
Software	'	34
Spezifische Leitfähigkeit		
		11
Standard		12
Standardtemperatur		12
Standortanforderungen	14,	17
Stromausgänge	'	27
Stromversorgung		23
System, Beschreibung des		10
т		
Technische Daten		16
	•••	12
	•••	28
	•••	20
U Üle ansistet üle an das tu stur		40
Upersignt uper das Instrument .	• •	16

V

Verdrahtung.							20
.							

AMI CACE

Index

W						
Werkeinstellungen						79

	,	
z	_	

Zellkonstante.								11
Zielgruppe	•						•	5

12. Notizen

A-96.250.870 / 130623

Swan-Produkte - Analytische Instrumente für:

Swan ist weltweit durch Tochtergesellschaften und Distributoren vertreten und kooperiert mit unabhängigen Vertriebspartnern auf der ganzen Welt. Für Kontaktangaben den QR-Code scannen.

Swan Analytical Instruments · CH-8340 Hinwil www.swan.ch · swan@swan.ch

SWISS 🚹 MADE

AMI CACE