

A-96.250.610 / 030322

# **Betriebsanleitung**

Firmware V6.00 und höher









#### Kundenbetreuung

Swan unterhält rund um die Welt ein dichtes Vertreternetz mit ausgebildeten Fachkräften. Kontaktieren Sie für technische Fragen die nächste Swan-Vertretung oder direkt den Hersteller:

Swan Analytische Instrumente AG Studbachstrasse 13 8340 Hinwil Schweiz

Internet: www.swan.ch E-Mail: support@swan.ch

#### Dokumentstatus

| Titel:   | Betriebsanleitung AMI INSPECTOR Conductivity |                                                                                     |  |
|----------|----------------------------------------------|-------------------------------------------------------------------------------------|--|
| ID:      | A-96.250.610                                 | A-96.250.610                                                                        |  |
| Revision | Ausgabe                                      |                                                                                     |  |
| 00       | Juli 2010                                    | Erstausgabe                                                                         |  |
| 01       | August 2014                                  | Aktualisiert auf Firmwareversion 5.30, neue Haupt-<br>platine V 2.4                 |  |
| 02       | November 2016                                | AMI Inspector Version 2-A (mit AMIAKKU-Hauptpla-<br>tine) und Firmware Version 6.00 |  |

© 2016, Swan Analytische Instrumente AG, Schweiz, alle Rechte vorbehalten.

Die in diesem Dokument enthaltenen Informationen können ohne Ankündigung geändert werden.



### Inhaltsverzeichnis

| <b>1.</b><br>1.1.<br>1.2.                                                                                       | Sicherheitshinweise                                                                                                                                                                                                                                                                                                                                              | <b>5</b><br>6<br>8                                                                |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| <b>2.</b><br>2.1.<br>2.2.<br>2.3.                                                                               | Produktbeschreibung                                                                                                                                                                                                                                                                                                                                              | <b>9</b><br>9<br>13<br>14                                                         |
| <b>3.</b><br>3.1.<br>3.2.<br>3.2.1<br>3.2.2<br>3.3.<br>3.4.<br>3.4.1<br>3.5.<br>3.5.1<br>3.5.2<br>3.5.3<br>3.6. | Installation         Installations-Checkliste         Probenein- und -auslassleitung anschliessen         Swagelok-Edelstahlarmatur am Probeneinlass         Probenauslass         Elektrische Anschlüsse         Anschlussdiagramm         Stromversorgung         Schaltkontakte         Schalteingang         Sammelstörkontakt         Schaltausgang 1 und 2 | <b>16</b><br>16<br>17<br>17<br>17<br>18<br>19<br>20<br>22<br>22<br>22<br>23<br>23 |
| <b>4.</b><br>4.1.                                                                                               | Das Instrument einrichten                                                                                                                                                                                                                                                                                                                                        | <b>24</b><br>24                                                                   |
| <b>5.</b><br>5.1.<br>5.2.<br>5.3.<br>5.4.                                                                       | Betrieb       Tasten         Tasten       Messwerte und Symbole am Display         Aufbau der Software       Parameter und Werte ändern                                                                                                                                                                                                                          | 26<br>27<br>28<br>29                                                              |
| <b>6.</b><br>6.1.<br>6.2.<br>6.3.<br>6.4.<br>6.4.1<br>6.4.2<br>6.4.3<br>6.4.4                                   | Wartung         Wartungsplan         Betriebsstopp zwecks Wartung.         Den Sensor warten         Qualitätssicherung des Instruments         SWAN-Qualitätssicherungsverfahren aktivieren         Vorabtest         Die Probeleitungen verbinden         Eine Vergleichsmessung durchführen                                                                   | <b>30</b><br>30<br>31<br>32<br>33<br>34<br>34<br>36                               |



| 6.4.5<br>6.5.<br>6.6.                             | Vergleichsmessung abschliessen<br>Kalibrierung<br>Längere Betriebsunterbrechungen                                                                           | 37<br>37<br>39                    |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| <b>7.</b><br>7.1.<br>7.2.                         | Fehlerbehebung         Fehlerliste         Die Sicherungen auswechseln                                                                                      | <b>40</b><br>40<br>43             |
| <b>8.</b><br>8.1.<br>8.2.<br>8.3.<br>8.4.<br>8.5. | Programmübersicht.<br>Meldungen (Hauptmenü 1)<br>Diagnose (Hauptmenü 2).<br>Wartung (Hauptmenü 3).<br>Betrieb (Hauptmenü 4).<br>Installation (Hauptmenü 5). | <b>44</b><br>45<br>46<br>46<br>47 |
| 9.                                                | Programmliste und Erläuterungen.         1 Meldungen         2 Diagnose.         3 Wartung.         4 Betrieb.         5 Installation.                      | <b>49</b><br>49<br>51<br>52<br>53 |
| 10.                                               | Werkseinstellungen                                                                                                                                          | 65                                |
| 11.<br>12                                         | Index                                                                                                                                                       | 68<br>60                          |
| 12.                                               | NOUZEN                                                                                                                                                      | 69                                |





## **Betriebsanleitung**

Dieses Dokument beschreibt die wichtigsten Schritte zu Einrichtung, Betrieb und Wartung des Instruments.

# 1. Sicherheitshinweise

| Allgemeines                       | Die in diesem Abschnitt angeführten Sicherheitsbestimmungen er-<br>klären mögliche Risiken in Verbindung mit dem Betrieb des Instru-<br>ments und enthalten wichtige Sicherheitsanweisungen zu deren<br>Minimierung.<br>Wenn Sie die Informationen in diesem Abschnitt sorgfältig beachten,<br>können Sie sich selbst vor Gefahren schützen und eine sicherere Ar-<br>beitsumgebung schaffen.<br>Weitere Sicherheitshinweise befinden sich in diesem Handbuch je-<br>weils an den Stellen, wo eine Beachtung äusserst wichtig ist.<br>Alle in diesem Dokument angegebenen Sicherheitshinweise sind<br>strikt zu befolgen. |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zielgruppe                        | Bediener: Qualifizierte Person, die das Gerät für seinen vorgesehe-<br>nen Zweck verwendet.<br>Der Betrieb des Instruments erfordert eingehende Kenntnisse von<br>Anwendungen, Instrumentfunktionen und Softwareprogrammen so-<br>wie aller anwendbaren Sicherheitsvorschriften und -bestimmungen.                                                                                                                                                                                                                                                                                                                        |
| Aufbewah-<br>rungsort<br>Handbuch | Die Betriebsanleitung für das AMI INSPECTOR Conductivity muss in der Nähe des Instruments aufbewahrt werden.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Qualifizierung,<br>Schulung       | <ul> <li>Um das Instrument sicher zu installieren und zu betreiben, müssen Sie:</li> <li>die Anweisungen in diesem Handbuch lesen und verstehen.</li> <li>die jeweiligen Sicherheitsvorschriften kennen.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                       |



### 1.1. Warnhinweise

Die für sicherheitsbezogene Hinweise verwendeten Signalwörter und Symbole haben folgende Bedeutung:



### GEFAHR

Diese Warnung weist auf gefährliche Situationen hin zu schweren Verletzungen oder zum Tod führt.

• Befolgen Sie sorgfältig die Anweisungen zu ihrem Schutz.



#### WARNUNG

Diese Warnung weist auf gefährliche Situationen hin die möglicherweise zu schweren Verletzungen, zum Tod oder zu grossen Sachschäden führen kann.

• Befolgen Sie sorgfältig die Anweisungen zu ihrem Schutz.



#### VORSICHT

Diese Warnung weist auf gefährliche Situationen hin die zu leichten Verletzungen, Sachschäden, Fehlfunktionen oder falschen Prozessresultaten führen können.

• Befolgen Sie sorgfältig die Anweisungen zu ihrem Schutz.

**Gebotszeichen** Die Gebotszeichen in dieser Betriebsanleitung haben die folgende Bedeutung:



Schutzbrille tragen



Schutzhandschuhe tragen





**Warnsymbole** Die Warnsymbole in dieser Betriebsanleitung haben die folgende Bedeutung:



Warnung vor gefährlicher elektrischer Spannung



Korrodierend



Gesundheitsschädlich



Entflammbar



Allgemeiner Warnhinweis



Achtung allgemein



### 1.2. Allgemeine Sicherheitsbestimmungen

Gesetzliche Der Benutzer ist für den ordnungsgemässen Betrieb verantwortlich. Anforderungen Alle Vorsichtsmassnahmen sind zu beachten, um einen sicheren Betrieb des Instruments zu gewährleisten.

**Ersatzteile und Einwegartikel** Es dürfen ausschliesslich Ersatzteile und Einwegartikel von SWAN verwendet werden. Bei Verwendung anderer Teile während der normalen Gewährleistungsfrist erlischt die Herstellergarantie.

Änderungen Modifikationen und Instrumenten-Upgrades dürfen nur von autorisierten Servicetechnikern vorgenommen werden. SWAN haftet nicht für Ansprüche aus nicht autorisierten Modifikationen oder Veränderungen.



### WARNUNG

#### Gefährliche elektrische Spannung

Ist der ordnungsgemässe Betrieb nicht mehr möglich, trennen Sie das Instrument von der Stromversorgung und ergreifen die erforderlichen Massnahmen, um einen versehentlichen Betrieb zu verhindern.

- Zum Schutz vor elektrischen Schlägen immer sicherstellen, dass der Erdleiter angeschlossen ist.
- Wartungsarbeiten d
  ürfen nur von autorisiertem Personal durchgef
  ührt werden.
- Ist eine elektronische Wartung erforderlich, das Instrument sowie Geräte die an folgende Kontakte angeschlossen sind vom Netz trennen:
  - Schaltausgang 1
  - Schaltausgang 2
  - Sammelstörkontakt



#### WARNUNG

Um das Instrument sicher zu installieren und zu betreiben, müssen Sie die Anweisungen in diesem Handbuch lesen und verstehen.



#### WARNUNG

Die in diesem Dokument beschriebenen Arbeiten dürfen nur von Personen durchgeführt werden, die von SWAN geschult und autorisiert wurden.



# 2. Produktbeschreibung

### 2.1. Beschreibung des Systems

Der portable AMI INSPECTOR, ein eigenständiges tafelmontiertes Überwachungssystem mit Ständer und Akku für eine Betriebsdauer von >24 Stunden, wurde als Inspektionsausrüstung für die Qualitätssicherung bei Online-Prozessmonitoren entwickelt.

Anwendungs-<br/>bereichDie Leitfähigkeit ist ein Parameter für die Gesamtmenge der in einer<br/>Lösung vorhandenen Ionen. Sie kann verwendet werden für die<br/>Überwachung vom:

- Zustand des Wassers
- Wasseraufbereitung
- Härtegrad von Wasser
- Vollständigkeit der Ionenanalyse

Eigenschaften Zu den allgemeinen Merkmalen gehören:

- Akkulebensdauer nach vollständiger Aufladung:
  - >24 Stunden bei Volllast (3 Relais, USB, Signalausgang und Logger aktiv)
  - >36 Stunden bei Minimallast (nur Logger aktiv)
- Ladezeit: ca. 6 Stunden
- Kontrollierte Abschaltung bei entladenem Akku
- Anzeige der verbleibenden Ladezeit in Stunden
- Deaktivierung der Hintergrundbelechtung zur Verlängerung der Akkulaufzeit
- Dauerbetrieb mit Netzadapter. Die Batterie sollte mindestens einmal pro Monat entladen werden (normale Verwendung, bis sich das Gerät automatisch ausschaltet).
- Batterie Die Li-Ion-Batterie befindet sich im Gehäuse des AMI-Transmitters. Informationen zu Akku und Ladevorgang finden Sie in Kapitel Stromversorgung, S. 20.
- USB-Schnittstelle Eingebaute USB-Schnittstelle zum Herunterladen der Loggerdaten. Verwenden Sie nur den von Swan mitgelieferten USB-Stick (andere USB-Sticks können die Batterielaufzeit deutlich verringern).



| Spezielle<br>Funktionen    | Viele Temperaturkompensationskurven für Messungen der spezifi-<br>schen Leitfähigkeit:<br>• Keine<br>• Koeffizient<br>• Neutrale Salze<br>• Reinstwasser<br>• Starke Säuren<br>• Starke Basen<br>• Ammoniak, Eth.am.<br>• Morpholin                                                                                                     |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signalausgang              | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                    |
| Schalt-<br>ausgänge        | Zwei als Grenzschalter für Messwerte programmierbare potenzial-<br>freie Kontakte, Regler oder Timer für die Systemreinigung mit auto-<br>matischer Haltefunktion.<br>Maximallast:100 mA/50 V                                                                                                                                           |
| Sammel-<br>störkontakt     | <ul> <li>Ein potenzialfreier Kontakt.</li> <li>Alternativ: <ul> <li>offen bei Normalbetrieb, geschlossen bei Fehler und Stromausfall</li> <li>geschlossen bei Normalbetrieb, offen bei Fehler und Stromausfall</li> </ul> </li> <li>Zusammenfassung von Störmeldungen für programmierbare Alarmwerte und Instrumentenfehler.</li> </ul> |
| Schalteingang              | Ein Schalteingang für potenzialfreie Kontakte zum «Einfrieren» des<br>Messwerts oder zur Unterbrechung der Regelung bei automatischen<br>Installationen (Haltefunktion oder Fernabschaltung).                                                                                                                                           |
| Sicherheits-<br>funktionen | Kein Datenverlust bei Stromausfall. Alle Daten werden im nicht-<br>flüchtigen Speicher abgelegt. Überspannungsschutz für Ein- und<br>Ausgänge. Galvanische Trennung der Messeingänge von den<br>Signalausgängen.                                                                                                                        |



| Messprinzip                 | Die Leitfähigkeit von hochreinem Wasser wird mit einem aus zwei<br>Metallelektroden bestehenden Sensor bestimmt. Die Eigenschaften<br>jedes Sensors werden als Zellkonstante ausgedrückt. An den zwei<br>Elektroden wird eine Wechselspannung (zur Minimierung von Polari-<br>sationseffekten) angelegt. In Abhängigkeit von der Ionenkonzentrati-<br>on in der Probe entsteht zwischen den Elektroden ein Signal, das<br>proportional zur Leitfähigkeit des Wassers ist. Das Messergebnis<br>wird als Leitfähigkeit angegeben. |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperatur-<br>kompensation | Die Mobilität der Ionen in Wasser steigert sich mit der Temperatur,<br>wodurch sich wiederum die Leitfähigkeit erhöht. Aus diesem Grund<br>wird die Temperatur gleichzeitig mit einem integrierten Pt1000-Sen-<br>sor gemessen und die Leitfähigkeit auf 25 °C kompensiert. Es ste-<br>hen verschiedene Temperaturkurven für unterschiedliche<br>Wasserzusammensetzungen zur Verfügung.                                                                                                                                         |
|                             | raturkompensationentauscher (Kationenieltranigkeit) muss die Tempe-<br>raturkompensationskurve für starke Säuren eingestellt werden. Für<br>weitere Infos siehe: Influence of Temperature on Electrical Con-<br>ductivity (Einfluss der Temperatur auf die elektrische Leitfähig-<br>keit), PPChem (2012).                                                                                                                                                                                                                      |
| Standard                    | Der engezeigte Leitfähigkeitewert wird auf die Standardtemperatur                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Standard-<br/>temperaturDer angezeigte Leitfähigkeitswert wird auf die Standardtemperatur<br/>von 25 °C kompensiert.



Fluidik Die Durchflusszelle (QV-Flow) besteht aus dem Durchflusszellenblock [B], dem Durchflussmesser [C] und dem Durchflussregulierventil [E].

Der Leitfähigkeitssensor [A] mit integriertem Temperatursensor wird in den Durchflusszellenblock [B] geschraubt.

Die Probe fliesst durch den Probeneinlass [F] und das Durchflussregulierventil [E], mit dem die Durchflussmenge eingestellt werden kann, in den Durchflusszellenblock [B], wo die Leitfähigkeit der Probe gemessen wird.

Danach fliesst die Probe durch den Durchflussmesser [C] und den Probenauslass [D] in den Abflusstrichter.



- **B** Durchflusszellenblock
- **C** Durchflussmesser
- **D** Probenauslass
- *E* Durchflussregulierventil
- F Probeneinlass



### 2.2. Übersicht über das Instrument



- A Messumformer
- **B** Leitfähigkeitssensor
- **C** Durchflusszelle
- **D** Probenauslass

- E Durchflussmesssensor
- F Probeneinlass
- G Durchflussregulierventil



### 2.3. Instrumentenspezifikation

| Stromversor-<br>gung       | Batterie<br>Nur den mitgelieferten Netzadapter verwenden.                                                                                                                                      |                                                                                                                                                                                 |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                            | Spannung:<br>Leistungsaufnahme:<br>Ladezeit:<br>Batterietyp:<br>Während des Ladevorgar<br>schützen (Stecker des Ne                                                                             | 85–265 VAC, 50/60 Hz<br>max. 20 VA<br>6 h<br>Li-Ion<br>ngs vor allzu grosser Hitze und Feuchtigkeit<br>etzadapters ist nicht IP66-konform).                                     |  |
| Betriebszeit               | Ab Batterie:<br>Mit Netzadapter:<br>Kontrollierte Abschaltung<br>wird angezeigt.                                                                                                               | >24 h<br>Unbegrenzt<br>bei entladenem Akku, verbleibende Zeit                                                                                                                   |  |
| Elektronik-<br>gehäuse     | Aluminium, mit einem Sc<br>Umgebungstemperatur:<br>Feuchtigkeit:<br>Display:                                                                                                                   | hutzgrad von IP 66 / NEMA 4X.<br>-10 bis 50 °C<br>10 bis 90% relativ, nicht kondensierend<br>hintergrundbeleuchtetes LCD 75x45 mm                                               |  |
| Probenanfor-<br>derungen   | Durchflussrate:<br>Temperatur:<br>Eingangdruck:                                                                                                                                                | 5–20 l/h<br>bis 50 °C<br>bis 2 bar                                                                                                                                              |  |
| Standortanfor-<br>derungen | Probeneinlass:<br>Probenauslass:                                                                                                                                                               | 1/4" Swagelok Rohradapter<br>Flexibler Schlauch, 6x8 mm,<br>druckfreier Ablauf mit genügend Kapazität                                                                           |  |
| Messbereich                | Messbereich<br>0.055 bis 0.999 µS/cm<br>1.00 bis 9.99 µS/cm<br>10.0 bis 99.9 µS/cm<br>100 bis 999 µS/cm<br>1.00 to 2.99 mS/cm<br>3.0 to 9.9 mS/cm<br>10 to 30 mS/cm<br>Automatische Bereichsur | Auflösung<br>$0.001 \ \mu$ S/cm<br>$0.01 \ \mu$ S/cm<br>$0.1 \ \mu$ S/cm<br>$1 \ \mu$ S/cm<br>$0.01 \ m$ S/cm<br>$0.1 \ m$ S/cm<br>$1 \ m$ S/cm<br>$1 \ m$ S/cm<br>$1 \ m$ S/cm |  |
| Genauigkeit                | ±1% des Messwerts oder                                                                                                                                                                         | r ±1 Digit (je nachdem, was grösser ist)                                                                                                                                        |  |



#### Sensor UP-Con1000 SL

Der Swansensor UP-Con1000 SL ist ein 2-Elektroden-Leitfähigkeitssensor zur kontinuierlichen Messung der spezifischen und Säureleitfähigkeit mittels integriertem Temperaturfühler.

Materialien

Betriebsbedingungen Sensor-Zellkonstante k: ~0.04 cm -1 Temperatursensor: Schaft: Elektrode: Isolation: Dauertemperatur: Max. Temperatur: Max. Druck:

Pt1000 SS 316L, Edelstahl Titan PFFK 100 °C bei 6,5 bar 120 °C bei 6.5 bar 30 bar bei 25 °C



Die Zellkonstante (ZK) und die Korrektur des Temperatursensors (DT) sind auf dem Sensor angegeben.



# 3. Installation

### 3.1. Installations-Checkliste

| Überprüfung      | <ul> <li>Die Spezifikation des Instruments muss den Netzspezifikationen<br/>vor Ort entsprechen, siehe Externer Netzadapter, S. 21.</li> </ul> |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                  | <ul> <li>Überprüfen, ob der Akku voll geladen ist.</li> </ul>                                                                                  |  |
| Standortanforde- | Probenleitung mit genügend Durchfluss und Druck, siehe Instru-                                                                                 |  |
| rungen           | mentenspezifikation, S. 14.                                                                                                                    |  |
| Installation     | <ul> <li>Probenein- und auslassleitung anschliessen.</li> </ul>                                                                                |  |
|                  | Sensor ist bereits montiert.                                                                                                                   |  |
| Elektrische      | Alle externen Geräte wie Endschalter und Stromschleifen                                                                                        |  |
| Anschlüsse       | anschliessen, siehe Anschlussdiagramm, S. 19.                                                                                                  |  |
| Einschalten      | Das Durchflussregulierventil öffnen und warten, bis sich die                                                                                   |  |
|                  | Durchtiusszelle vollstandig getullt nat.                                                                                                       |  |
|                  | Das Instrument einschalten.                                                                                                                    |  |
|                  | Den Probeniluss auf 5–20 i/n regein.                                                                                                           |  |
| Das Instrument   | Alle sensorspezifischen Parameter programmieren     (Zeilkenstante, Tempereturkerrektur, Kehellänge)                                           |  |
| einrichten       | (Zeinkonstante, Temperaturkonektur, Kabenange).                                                                                                |  |
|                  | <ul> <li>Alle Parameter für externe Gerate (Schnittstelle, Rekorder etc.)<br/>programmieren.</li> </ul>                                        |  |
|                  | Alle Parameter für den Betrieb des Instruments (Grenzwerte.                                                                                    |  |
|                  | Alarmwerte) programmieren.                                                                                                                     |  |
| Einlaufzeit      | Das Instrument 1 Stunde einlaufen lassen.                                                                                                      |  |
|                  | <b>Hinweis:</b> Weist die Probe eine niedrige Leitfähigkeit auf, kann<br>es eine Weile dauern, bis der Sensor den korrekten Wert<br>anzeigt.   |  |



### 3.2. Probenein- und -auslassleitung anschliessen

#### 3.2.1 Swagelok-Edelstahlarmatur am Probeneinlass

- **Vorbereitung** Rohr ablängen und entgraten. Es sollte auf einer Länge von 1,5 x Rohrdurchmesser vom Ende gerade und frei von Beschädigungen sein. Bei der Montage/Neumontage von grösseren Armaturen (Gewinde, Klemmring) sollte mit Schmieröl, MoS2, Teflon etc. geschmiert werden.
  - Installation 1 Kompressionsmuffe [C] und Klemmring [D] in die Überwurfmutter [B] einsetzen.
    - 2 Die Überwurfmutter auf das Anschlussstück schrauben, aber nicht festziehen.
    - **3** Das Edelstahlrohr durch die Überwurfmutter bis zum Anschlag in das Anschlussstück schieben.
    - 4 Die Überwurfmutter mit einem Gabelschlüssel 1¼ Umdrehungen anziehen. Dabei Anschlussstück mit Hilfe eines zweiten Schlüssels gegen Verdrehen sichern.



- A Edelstahlrohr
- **B** Überwurfmutter
- C Kompressionsmuffe
- **D** Klemmring
- E Anschlussstück
- **F** Festgezogene Verbindung

#### 3.2.2 Probenauslass

Flexibler 6-mm Schlauch für AMI INSPECTOR Conductivity.



- A Winkelverschraubung
- **B** Kompressionsmuffe
- C Rändelmutter
- D Flexibler Schlauch
- •

### 3.3. Elektrische Anschlüsse

#### WARNUNG

Schalten Sie das Instrument vor Arbeiten an elektrischen Bauteilen immer aus. Stellen Sie vor der Inbetriebnahme sicher, dass die Netzspannung vor Ort mit den Spezifikationen des Instruments übereinstimmt.

Kabelstärke Zur Einhaltung des Schutzgrades IP 66 verwenden Sie die folgenden Kabelstärken:

> **A** PG 9 Leitungseinführung: Kabel Ø<sub>aussen</sub> 4–8 mm **B** PG 7 Leitungseinführung: Kabel Ø<sub>aussen</sub> 3–6,5 mm

*Hinweis:* Verschliessen Sie nicht verwendete Leitungseinführungen.

#### Verdrahtung

- Für Stromversorgung und Schaltausgang: Verwenden Sie Litzendraht (max. 1,5 mm<sup>2</sup>/AWG 14) mit Aderendhülsen.
- Für Signalausgänge und Schalteingang: Verwenden Sie Litzendraht (max. 0,25 mm<sup>2</sup>/AWG 23) mit Aderendhülsen.

#### WARNUNG

#### Fremdspannung.

Über eine externe Stromversorgung gespeiste und an Schaltkontakt 1 oder 2 bzw. einen Sammelstörkontakt angeschlossene Geräte können elektrische Schläge verursachen.

- Die an folgende Kontakte angeschlossenen Geräte müssen vor der Fortführung der Installation vom Netz getrennt werden:
  - Schaltausgang 1
  - Schaltausgang 2
  - Sammelstörkontakt









### 3.4. Anschlussdiagramm





#### VORSICHT

Verwenden Sie nur die in diesem Diagramm dargestellten Klemmen und nur zum vorgesehenen Zweck. Der Einsatz anderer Klemmen kann zu Kurzschlüssen und damit zu Beschädigungen oder Verletzungen führen.



#### 3.4.1 Stromversorgung

Im Gegensatz zu allen anderen Swan Online-Prozessmonitoren arbeitet der Messumformer AMI INSPECTOR nur mit einem Lithiumlonen-Akku, der einen eigenständigen Betrieb über 24 Stunden ermöglicht.



#### WARNUNG

Verbinden Sie den Messumformer niemals direkt mit einer Stromquelle, da hierdurch die Hauptplatine beschädigt werden kann. Der AMI INSPECTOR ist ausschliesslich für den Akkubetrieb vorgesehen.

Ladevorgang Verwenden Sie zum Aufladen des AMI INSPECTOR nur den mitgelieferten Netzadapter. Ladezeit: ca. 6 Std.

Bei voller Ladung garantieren wir eine Mindest-Betriebsdauer von 24 Stunden:

- >24 Stunden bei Volllast (3 Relais, USB, Signalausgang und Logger aktiv)
- >36 Stunden bei Minimallast (nur Logger aktiv)

Sollte der Akku vollständig entladen werden, schaltet die Firmware automatisch ab.

**Dauerbetrieb** Für den Dauerbetrieb ist ebenfalls der Netzadapter zu verwenden.



#### VORSICHT

 Falls sich der AMI nach dem Einschalten sofort wieder ausschaltet, ist die Batterie leer. Versuchen Sie nicht, den Kippschalter in der ON-Position zu festzuhalten, da dadurch die Batterie beschädigt werden kann.



#### VORSICHT

- Schützen Sie das Instrument während des Ladevorgangs vor allzu grosser Hitze und Feuchtigkeit (Stecker des Netzadapters ist nicht IP66-konform).
- Versorgen Sie keine externen Geräte wie Pumpen, Magnetventile oder andere Verbraucher mit dem AMI INSPECTOR.

Installation





#### VORSICHT

 Verwenden Sie zum Laden des AMI INSPECTOR nur den mitgelieferten Netzadapter. Andere Netzadapter können die Batterie beschädigen oder Funktionsstörungen verursachen.

Externer Netzadapter

- Universaleingangsbereich 85–265 VAC
- Dauerhafte Kurzschlussfestigkeit
- Überspannungsschutz
- LED-Einschaltanzeige
- 2-Pin-Buchse (IEC 320-C8) für länderspezifisches Netzkabel.



Netzkabel Zwei verschiedene Netzkabel sind im Lieferumfang enthalten:

- mit Stecker Typ C (Eurostecker)
- mit Stecker Typ A (NEMA-1)

Falls ein anderer Steckertyp benötigt wird, kaufen Sie bitte das passende Netzkabel im Fachhandel.



### 3.5. Schaltkontakte

Programmierung der Schaltkontakte siehe 5.3 Schaltkontakte, S. 58.

### 3.5.1 Schalteingang

*Hinweis:* Verwenden Sie nur potenzialfreie (trockene) Kontakte. Klemmen 13/14 Nähere Informationen zur Programmierung finden Sie in Programmliste und Erläuterungen, S. 49.

### 3.5.2 Sammelstörkontakt

Hinweis: Maximalbelastung 1 A/250 VAC.

Alarmausgang für Systemfehler. Informationen zu Fehlercodes erhalten Sie in Fehlerliste, S. 40. Programmierung siehe 5.3.1, S. 58.

*Hinweis:* Bei bestimmten Alarmen und bei bestimmten Einstellungen am AMI Transmitter schaltet das Alarmrelais nicht. Der Fehler wird jedoch am Display angezeigt.

|                                                       | Klemmen | Beschreibung                                                                                    | Anschluss Relais |
|-------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------|------------------|
| NC <sup>1)</sup><br>Normaler-<br>weise<br>geschlossen | 5/4     | Im Normalbetrieb aktiv<br>(geöffnet).<br>Bei Fehlern und Stromausfall<br>inaktiv (geschlossen). |                  |
| NO<br>Normaler-<br>weise<br>offen                     | 5/3     | Im Normalbetrieb aktiv<br>(geschlossen).<br>Bei Fehlern und Stromausfall<br>inaktiv (geöffnet). |                  |

1) normale Verwendung



### 3.5.3 Schaltausgang 1 und 2

*Hinweis:* Maximalbelastung 100 mA/50 V. Programmierung siehe Menü Installation 5.3.2 und 5.3.3, S. 60.

|                                          | Klemmen                        | Beschreibung                                                                                                                                 | Anschluss Relais                |
|------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <b>NO</b><br>Normaler-<br>weise<br>offen | 6/7: Relais 1<br>8/9: Relais 2 | Inaktiv (geöffnet) bei Normalbe-<br>trieb und Stromausfall.<br>Aktiv (geschlossen) wenn eine<br>programmierte Funktion aus-<br>geführt wird. | ∽₩<br>→<br>©<br>0V<br>0V<br>7/9 |

### 3.6. Signalausgang

Der Signalausgang 0/4-20 mA wird auf die USB-Platine gesteckt.

#### Hinweis: Maximallast 510 Ω.

Klemmen 16 (+) und 15 (-). Programmierung siehe 5.2 Signalausgänge, S. 54.



A Zusatzplatine f
ür Signalausgang 0/4–20 mAB USB-Platine



## 4. Das Instrument einrichten

### 4.1. Programmierung

Sensor-<br/>parameterAlle Sensorparameter über Menü 5.1.2 <Installation>/<Sensoren>/<br/><Sensorparameter> konfigurieren:

Folgendes eingeben:

- Zellkonstante [cm<sup>-1</sup>]
- Temperaturkorrektur [°C]
- Kabellänge
- Temperaturkompensation

Die Sensorcharakteristika sind auf dem Etikett des Sensors aufgedruckt.

| 87-344.203  | UP-Con1000SL | Sensortyp           |
|-------------|--------------|---------------------|
| SW-xx-xx-xx | ZK = 0.0417  | Zellkonstante       |
| SWAN AG     | DT = 0.06 °C | Temperaturkorrektur |

Kabellänge [m]. Wert auf 0.0 m einstellen, wenn die Sensoren in der Durchflusszelle des AMI-Monitors installiert wurden.

Temp. Menü 5.1.3

Kompensation Wählen zwischen:

- Keine
- Koeffizient
- Neutrale Salze
- Reinstwasser
- Starke Säuren
- Starke Basen
- Ammoniak, Eth.am.
- Morpholin

#### Masseinheit Menü 5.1.1.2

<Masseinheit> gemäss Ihren Anforderungen einstellen:

- µS/cm
- µS/m



Das Instrument einrichten



| Externe<br>Geräte     | Alle Parameter für externe Geräte (Schnittstelle, Rekorder etc.) pro-<br>grammieren. Siehe dazu Programmliste und Erläuterungen unter 5.2<br>Signalausgänge, S. 54 und 4.2 Schaltausgänge, S. 52 |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grenzwerte,<br>Alarme | Alle Parameter für den Betrieb des Instruments (Grenzwerte, Alarm-<br>werte) programmieren. Siehe Programmliste und Erläuterungen un-<br>ter 4.2 Schaltausgänge, S. 52.                          |



AMI INSPECTOR Conductivity Betrieb



## 5. Betrieb

### 5.1. Tasten



A das Menü verlassen, den Befehl abbrechen (ohne Änderungen zu speichern)

zur vorherigen Menüebene zurückkehren

- B in einer Menüliste ABWÄRTS bewegen oder Werte verringern
- **C** in einer Menüliste AUFWÄRTS bewegen oder Werte erhöhen zwischen Display 1 und 2 hin und her wechseln
- D ein ausgewähltes Untermenü öffnen einen Eintrag akzeptieren









### 5.2. Messwerte und Symbole am Display



### 5.3. Aufbau der Software

| 1 |
|---|
|   |
| • |
| • |
| • |
| • |
|   |

| Meldungen         | 1.1 |
|-------------------|-----|
| Anliegende Fehler | •   |
| Meldungs-Liste    | ►   |
|                   |     |

| Diagnose       | 2.1 |
|----------------|-----|
| Identifikation | •   |
| Sensoren       |     |
| Probe          |     |
| E/A Zustände   |     |
| Schnittstelle  | •   |

| Wartung     |          | 3.1      | I |
|-------------|----------|----------|---|
| Kalibration |          | •        |   |
| Simulation  |          | •        |   |
| Uhr stellen | 23.09.06 | 16:30:00 |   |

| Betrieb        | 4.1 |
|----------------|-----|
| Sensoren       | •   |
| Schaltkontakte | •   |
| Logger         |     |
|                |     |

| Installation   | 5.1 |
|----------------|-----|
| Sensoren       | •   |
| Signalausgänge | •   |
| Schaltkontakte | •   |
| Diverses       |     |
| Schnittstelle  |     |

#### Menü 1: Meldungen

Zeigt die aktuellen Fehler sowie ein Ereignisprotokoll (Zeit und Status von Ereignissen, die zu einem früheren Zeitpunkt eingetreten sind) sowie Wartungsanfragen.

Enthält benutzerrelevante Daten.

#### Menü 2: Diagnose

Enthält benutzerrelevante Instrumenten- und Probendaten.

#### Menü 3: Wartung

Für Instrumentenkalibrierung, Service, Schalt- und Signalausgangsimulation und Einstellung der Instrumentenzeit.

Verwaltung durch den Kundendienst.

#### Menü 4: Betrieb

Untermenü von Menü 5 - **Installation**, aber prozessbezogen. Anwenderrelevante Parameter, die während des täglichen Betriebs möglicherweise angepasst werden müssen. Normalerweise passwortgeschützt und durch Prozess-Bediener verwaltet.

#### Menü 5: Installation

Zur Erstinbetriebnahme des Instruments und Einstellung aller Instrumentenparameter durch autorisierte SWAN-Techniker. Kann durch ein Passwort geschützt werden.





#### 5.4. Parameter und Werte ändern

Das folgende Beispiel zeigt, wie das Logintervall geändert wird: ... ... ....

### Ändern von Parametern

| Parametern           |                                                               | 1 | Den Menüpunkt auswählen der                                                                                       |
|----------------------|---------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------|
|                      | Logger 4.4.1                                                  |   | geändert werden soll.                                                                                             |
|                      | Logger löschen nein                                           | 2 | [Enter] drücken.                                                                                                  |
|                      | ► ]                                                           |   |                                                                                                                   |
|                      | Logger 4.1.3<br>Loginterv Intervall ↓                         | 3 | Mit der <> oder<><br>Taste den gewünschten Parameter<br>auswählen.                                                |
|                      | 10 Minuten<br>30 Minuten<br>1 Stunde                          | 4 | [Enter] drücken, um die Auswahl<br>zu bestätigen oder [Exit], um den<br>Parameter beizubehalten.                  |
|                      | Logger 4.1.3<br>Logintervall 10 Minuten                       |   | ⇒ Der ausgewählte Parameter wird<br>angezeigt (ist aber noch nicht<br>gespeichert).                               |
|                      | Logger loschen nein                                           | 5 | [Exit] drücken.                                                                                                   |
|                      |                                                               |   |                                                                                                                   |
|                      | Logger (13                                                    |   | $\Rightarrow$ Ja ist markiert.                                                                                    |
|                      | Loginter Speichern? nuten<br>Logger Ja<br>Nein                | 6 | [Enter] drücken, um den neuen<br>Parameter zu speichern.<br>⇒ Der Messumformer wird neu<br>gestartet und der neue |
|                      |                                                               |   | Parameter wird übernommen.                                                                                        |
| Ändern von<br>Werten | Alarm Leitfähigkeit 53111                                     | 1 | Den Wert auswählen der geändert werden soll.                                                                      |
|                      | Alarm hoch 300 ms<br>Alarm tief 0. <del>660 µ</del> s         | 2 | [Enter] drücken.                                                                                                  |
|                      | Hysterese 1.00 μs<br>Verzögerung 5 Sek                        | 3 | Mit der <> oder<><br>Taste den neuen Wert einstellen.                                                             |
|                      | Alarm Leitfähigkeit 531.1.1                                   | 4 | [Enter] drücken um die Änderung<br>zu bestätigen.                                                                 |
|                      | Alarm hoch 200 ms<br>Alarm tief 0.000 µs<br>Hysterese 1.00 µs | 5 | [Exit] drücken.<br><i>⇒ Ja ist markiert.</i>                                                                      |
|                      | Verzögerung 5 Sek                                             | 6 | [Enter] drücken, um den neuen Wert<br>zu speichern.                                                               |



# 6. Wartung

### 6.1. Wartungsplan

| Monatlich   | Probenfluss kontrollieren                         |  |
|-------------|---------------------------------------------------|--|
| Falls nötig | <ul> <li>Leitfähigkeitssensor reinigen</li> </ul> |  |

### 6.2. Betriebsstopp zwecks Wartung

- 1 Den Probenfluss unterbrechen.
- 2 Das Instrument vom Netz trennen.



### 6.3. Den Sensor warten



- A Leitfähigkeitssensor
- B Ausrichtungsmarkierungen
- **C1** Sicherungsstift verriegelt
- **C** Sicherungsstift offen
- D Sicherungsschraube
- E Durchflusszelle
- F Durchflussregulierventil

### Den Sensor aus der Durchflusszelle ausbauen

- 1 Den Probenfluss stoppen.
- 2 Den Sicherungsstift [C<sub>1</sub>] nach unten drücken.
- 3 Die Sicherungsschraube [D] mit einem 5-mm-Inbusschlüssel 180° gegen den Uhrzeigersinn drehen.
   ⇒ Der Sicherungsstift bleibt unten.
- 4 Den Sensor aus der Durchflusszelle nehmen.
- **Reinigen** Bei Verunreinigung den Sensor mit Seifenlauge und Pfeifenbürste reinigen. Bei stärkeren Verschmutzungen die Sensorspitze für kurze Zeit in 5%-ige Salzsäure eintauchen.

#### Den Sensor in die Durchflusszelle einbauen

- 1 Der Verriegelungsmechanismus muss entriegelt sein, Sicherungsstift in Position [C].
- 2 Den Sensor so in die Durchflusszelle einsetzen, dass die Markierungen [B] senkrecht übereinander stehen.
- 3 Die Sicherungsschraube mit einem 5-mm-Inbusschlüssel 180° im Uhrzeigersinn drehen.
  - $\Rightarrow$  Der Sicherungsstift rastet in die verriegelte Position ein.



### 6.4. Qualitätssicherung des Instruments

Jedes SWAN Online-Instrument ist mit integrierten, autonomen Qualitätssicherungsfunktionen ausgestattet, mit denen die Plausibilität der durchgeführten Messungen geprüft wird.

Für AMI Powercon Specific und AMI Powercon Acid sind dies:

- kontinuierliche Überwachung des Probenflusses
- kontinuierliche Überwachung der Temperatur im Messumformergehäuse
- regelmässige Genauigkeitstests mit hochpräzisen Widerständen

Zusätzlich kann mit Hilfe eines Referenzinstruments eine manuelle menügeführte Inspektion durchgeführt werden. Nach der Aktivierung der Qualitätssicherung über die gewünschte Stufe wird der Bediener regelmässig zur Durchführung des Verfahrens aufgefordert. Die Ergebnisse werden zwecks späterer Prüfung im Verlauf gespeichert.

# Qualitätssiche-<br/>rungsstufeZentraler Bestandteil der Qualitätssicherungsfunktion ist die Evaluie-<br/>rung des überwachten Prozesses per Qualitätssicherungsstufe.

Es stehen drei vordefinierte Stufen plus eine Benutzerstufe zur Verfügung. Mit ihnen werden Wartungsintervall, Abweichgrenzwerte für die Temperatur sowie die Messergebnisse zwischen Inspektionsund Überwachungsinstrument definiert.

- Qualitätsstufe 1: **Trend**; Messung dient als zusätzliche Info zur Bestimmung des Prozesstrends.
- Qualitätsstufe 2: Standard; Überwachung verschiedener Prozessparameter (z. B. Sauerstoff, Hydrazin oder Leitfähigkeits-Wert im Speisewasser). Bei einem Instrumentenausfall können andere Parameter überwacht werden.
- Qualitätsstufe 3: Kritisch; Überwachung kritischer Prozesse. Der Wert wird zur Steuerung eines anderen Bereichs oder Subsystems (Ventil, Dosiereinheit etc.) verwendet.

Zusätzliche Qualitätsstufe:

 Qualitätsstufe 4: Benutzer; Benutzerdefiniertes Wartungsintervall, maximale Abweichung von Temperatur und Messergebnis.



Grenzwerte und Intervalle:

| Qualitätsstufe | Max. Abweichung<br>Temperatur [°C] <sup>a)</sup> | Max. Abweichung<br>Messergebnis [%] | Mindest-<br>Wartungsintervall             |
|----------------|--------------------------------------------------|-------------------------------------|-------------------------------------------|
| 0: Aus         | aus                                              | aus                                 | aus                                       |
| 1: Trend       | 0,5 °C                                           | 10%                                 | jährlich                                  |
| 2: Standard    | 0,4 °C                                           | 5%                                  | vierteljährlich                           |
| 3: Kritisch    | 0,3 °C                                           | 5%                                  | monatlich                                 |
| 4: Benutzer    | 0–2°C                                            | 0-20%                               | jährlich, viertel-<br>jährlich, monatlich |

a) Probentemperatur mindestens 25°C +/- 5°C.

Vorgehens- Folgende Tests gehören zum Standard-Workflow:

weise

1 Aktivieren des SWAN-Qualitätssicherungsverfahrens

- 2 Vorabtest
- 3 Anschliessen der Instrumente
- 4 Durchführen der Vergleichsmessung
- 5 Abschliessen der Vergleichsmessung

*Hinweis:* Der Test darf nur von Fachpersonal durchgeführt werden.

#### 6.4.1 SWAN-Qualitätssicherungsverfahren aktivieren

Das Qualitätssicherungsverfahren wird für jedes zu prüfende Instrument durch Auswahl der jeweiligen Stufe in Menü 5.1.4.1 aktiviert. Die entsprechenden Untermenüs werden dadurch sichtbar.

Hinweis: Die Aktivierung muss nur beim ersten Mal erfolgen.



#### 6.4.2 Vorabtest

- Referenzinstrument: AMI INSPECTOR Conductivity
  - Zertifikat prüfen; darf nicht älter als 1 Jahr sein
  - Batterie pr
    üfen; die Batterie des AMI INSPECTOR Conductivity sollte vollst
    ändig geladen sein. Auf dem Display angezeigte verbleibende Mindest-Betriebszeit: 20 Stunden
  - Temperaturkompensation deaktivieren (auf "Keine" einstellen)
- Online-Instrument: AMI Powercon:
  - Einwandfreier Zustand; Flusszelle partikelfrei; Sensoroberfläche sauber
  - Meldungsliste pr
    üfen; Liste (Men
    ü 1.3) auf h
    äufige Alarme (z. B. Durchflussalarme) pr
    üfen. Vor dem Start des Verfahrens die Ursachen f
    ür solche Alarme beheben.

#### 6.4.3 Die Probeleitungen verbinden

Siehe dazu das entsprechende Kapitel im Handbuch zum Prozessmonitor, der geprüft werden soll.

Wie die Probenleitungen angeschlossen werden hängt immer von den Standortbedingungen ab. Es gibt folgende Möglichkeiten:

- an der Messstelle
- mit T-Stück oder
- als Piggyback/Downstream

#### Hinweis:

34

- Schraubverbindungen verwenden, um Lufteintritt zu vermeiden.
- · Messung möglichst nahe beim Instrument.
- Bei laufender Messung mindestens 10 min. warten, bis Messwert und Temperatur stabil sind.



Beispiel Die nachfolgende Abbildung zeigt den Anschluss von Referenzinstrument und Prozessmonitor via T-Stück.



- A Monitor AMI Powercon
- **B** Online-Durchflusszelle
- **D** Referenz-Durchflusszelle
- E Probeneinlässe mit T-Stück
- **C** AMI Inspector Conductivity
- **F** Probenauslässe
- 1 Probenfluss zum AMI Powercon durch Schliessen des entsprechenden Ventils, z. B. Rückdruckregler, der Probenvorbereitung oder Durchflussregulierventil an der Durchflusszelle, stoppen.
- 2 Probenleitung von Monitor AMI Powercon [A] mit Probeneinlass des Referenzinstruments AMI Inspector [B] verbinden. Mitgeliefertes FEP-Rohr verwenden.
- **3** Probenauslass des Referenzinstruments AMI Inspector [C] mit Probenauslasstrichter des Monitors AMI Powercon verbinden.
- 4 Den AMI Inspector einschalten. Das Durchflussregulierventil öffnen und den Durchfluss einstellen.



#### 6.4.4 Eine Vergleichsmessung durchführen

- 1 Zum Menu <Wartung>/<Qualitätssicherung> navigieren.
- 2 Dem Dialog am Display folgen.

| Qualitätssicherung         3.4.5           - Vorbereitungen ausführen         -           - Inspector installieren         -           - Probenfluss auf 10 l/h         -                                                  |   | durchführen.<br>Die Instrumer<br>Probenfluss r<br>den Ventil aut  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------|
| Weiter mit <enter> Qualitätssicherung 3.4.5 Messwert Leitf. 0.078 μS Messwert Temp. 25 °C 10 Minuten warten</enter>                                                                                                        | 4 | Warten, bis di<br>sind, dies dau<br>10 Minuten.<br>[Enter] drücke |
| Weiter mit <enter> Qualitätssicherung 3.4.5 Messwert Leitf. 0.078 μS Messwert Temp. 25 °C</enter>                                                                                                                          | 5 | Den µS-Wert<br>ments ablese<br>"Inspector Co                      |
| Inspector Lent.         0.073 μS           Inspector Temp.         25 °C           Weiter mit <enter>         Qualitätssicherung         3.4.5           Messwert Leitf.         0.078 μS</enter>                          | 6 | Den Tempera<br>instruments a                                      |
| Messwert Temp. 25 °C<br>Inspector Leitf. 0.073 µS<br>Inspector Temp. 25 °C<br>Weiter mit <enter></enter>                                                                                                                   |   | Mit [Enter] be<br>Weiter mit [Er                                  |
| Qualitätssicherung         3.4.5           Max. Abw. Leitf.         0.5 %           Max. Abw. Temp.         0.4 %           Abw. Leitf.         0.1 %           Abw. Temp.         0.16 %           QS-Prüfung erfolgreich |   | erfolgreich<br>History ges                                        |
|                                                                                                                                                                                                                            | 7 |                                                                   |

- Vorbereitungen für Vorabtest durchführen.
   Die Instrumente anschliessen und Probenfluss mit dem entsprechenden Ventil auf 10 l/h regeln.
- Warten, bis die Messwerte stabil sind, dies dauert mindestens 10 Minuten.
   [Enter] drücken für weiter.
- 5 Den μS-Wert des Referenzinstruments ablesen und in das Feld "Inspector Cond." eingeben. Mit [Enter] bestätigen.
- 6 Den Temperaturwert des Referenzinstruments ablesen und in das Feld "Inspector Temp." eingeben. Mit [Enter] bestätigen. Weiter mit [Enter].
  - ⇒ Die Ergebnisse werden, ob erfolgreich oder nicht, in der QS-History gespeichert.

Schlägt die QS-Prüfung fehl, reinigen Sie den Sensor. Tritt das Problem weiterhin auf, kontaktieren Sie Ihren SWAN-Händler vor Ort.



#### 6.4.5 Vergleichsmessung abschliessen

- 1 Probenfluss unterbrechen.
- 2 Regelventil zum AMI INSPECTOR schliessen.
- 3 AMI INSPECTOR trennen. Dazu Zuleitungen entfernen und Probenauslass des AMI Powercon wieder mit dem Probenauslasstrichter verbinden.
- 4 Probenfluss wieder starten und regeln.
- **5** AMI INSPECTOR abschalten.

### 6.5. Kalibrierung

Wird ein UP-Con1000 Sensor verwendet muss das Instrument nicht kalibriert werden. Es wird jeden Tag automatisch um 00:30 h eine Nullmessung durchgeführt.

Eine Kalibrierung wird notwendig, wenn die Zellkonstante unbekannt ist. Um eine Kalibrierung durchzuführen wie folgt vorgehen:

- 1 Den Probenfluss stoppen.
- 2 Zum Menu <Wartung>/<Kalibrierung> navigieren.
- 3 [Enter] drücken und den Anweisungen am Display folgen.
- 4 Den Sensor aus der Durchflusszelle ausbauen.
- 5 Den Sensor sorgfältig reinigen und mit sauberem Wasser spülen, siehe Den Sensor warten, S. 31.
- 6 Ein 1-Liter-Gefäss mit Kalibrierlösung füllen.
- 7 Den Sensor in die Kalibrierlösung eintauchen.



| Kalibration 3.1.5<br>Sensor reinigen<br>und in Kalibrierlösung<br>stellen                                                           | 8  | Mindestens 5 Minuten warten, da-<br>mit ein Temperaturausgleich zwi-<br>schen Sensor und Kalibrierlösung<br>stattfinden kann. |
|-------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------|
| Weiter mit <enter></enter>                                                                                                          | 9  | [Enter] drücken um die Kalibration<br>zu starten.                                                                             |
| Kalibration     3.1.5       Sensor muss einen     Abstand von min. 3 cm       zur Gefässwand haben       Weiter mit <enter></enter> |    |                                                                                                                               |
| Kalibration         3.1.1           Kalibrierlösung         1.41 mS           Mosswort         1.30 mS                              | 10 | [Enter] drücken um die Werte nach<br>erfolgreicher Kalibration zu spei-<br>chern.                                             |
| Zellkonstante 0.406 cm <sup>-1</sup>                                                                                                | 11 | Den Sensor in die Durchflusszelle<br>einbauen.                                                                                |

Hinweis: Der Temperaturalgorithmus der Kalibrierungslösung von 1.413 mS/cm bei 25 °C wird im AMI Powercon-Messumformer gespeichert.

Wenn die Kalibrierungslösung eine Temperatur zwischen 5 °C und 50 °C und der eingebaute Temperatursensor nach mindestens 5 Minuten Einrichtzeit die gleiche Temperatur wie die Lösung aufweist, war die Kalibrierung (unabhängig von der über das Menü 5.1.3.1 gewählten Temperaturkompensation) erfolareich.

Während der Kalibrierung sind die Kontrollfunktionen unterbrochen. Die Signalausgänge sind eingefroren, wenn ein Haltepunkt programmiert wurde. Andernfalls verfolgen die Ausgänge den Messwert. Der Haltepunkt nach der Kalibrierung wird in der Anzeige durch <Halten> indiziert.



### 6.6. Längere Betriebsunterbrechungen

- **1** Den Probenfluss unterbrechen.
- 2 Das Instrument ausschalten.
- 3 Den Sensor ausbauen.
- 4 Die Durchflusszelle leeren und trocknen.



# 7. Fehlerbehebung

### 7.1. Fehlerliste

#### Fehler

Nicht schwerwiegender Fehler. Gibt einen Alarm aus, wenn ein programmierter Wert überschritten wurde.

Diese Fehler sind E0xx (schwarz und fett) gekennzeichnet.

#### Schwerwiegender Fehler 🔆 (Symbol blinkt)

Die Steuerung der Dosiervorrichtung wird unterbrochen. Die angezeigten Messwerte sind möglicherweise falsch.

Schwerwiegende Fehler werden 2 Kategorien aufgeteilt:

- Fehler die verschwinden, wenn die korrekten Messbedingungen wieder hergestellt sind (z.B. Probenfluss tief).
   Solche Fehler sind E0xx gekennzeichnet.
- Fehler die einen Hardwaredefekt des Instruments anzeigen. Solche Fehler sind E0xx gekennzeichnet).

| HOLD  | ж.   | 14:10:45 |
|-------|------|----------|
| R1    | 0.17 | ′1 μS    |
| R2    |      |          |
| 8 l/h |      | 25.4°C   |

| Messages         | 1.1 |
|------------------|-----|
| Pending Errors   |     |
| Maintenance List | •   |
| Message List     | •   |
| -                |     |
|                  |     |

| Pending Errors              | 1.1.5 |
|-----------------------------|-------|
| Error Code                  | E002  |
| Alarm low                   |       |
| <enter> to Acknowle</enter> | dge   |

# Fehler oder 🔆 schwerwiegender Fehler

Fehler noch nicht bestätigt.

Anliegende Fehler 1.1.5 prüfen und Korrekturmassnahmen anwenden.

Zum Menü <Meldungen>/ <Anliegende Fehler> navigieren.

Anliegende Fehler mit [ENTER] quittieren.

⇒ Die Fehler werden zurückgesetzt und in der Meldungsliste gespeichert.



| Fehler | Beschreibung      | Korrekturmassnahmen                                                                                                                                                            |
|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E001   | Leitf. Alarm hoch | <ul> <li>Prozess überprüfen</li> <li>Programmierte Werte überprüfen siehe<br/>5.3.1.1, p. 58</li> </ul>                                                                        |
| E002   | Leitf. Alarm tief | <ul> <li>Prozess überprüfen</li> <li>Programmierte Werte überprüfen siehe<br/>5.3.1.1, p. 58</li> </ul>                                                                        |
| E007   | Probentemp. hoch  | <ul> <li>Prozess überprüfen</li> <li>Programmierte Werte überprüfen siehe<br/>5.3.1.3, p. 59</li> </ul>                                                                        |
| E008   | Probentemp. tief  | <ul> <li>Prozess überprüfen</li> <li>Programmierte Werte überprüfen siehe<br/>5.3.1.3, p. 59</li> </ul>                                                                        |
| E009   | Probenfluss hoch  | <ul> <li>Eingangsdruck überprüfen</li> <li>Probenfluss nachregeln</li> <li>Programmierte Werte überprüfen,<br/>siehe 5.3.1.2.2, p. 59</li> </ul>                               |
| E010   | Probenfluss tief  | <ul> <li>Eingangsdruck überprüfen</li> <li>Probenfluss nachregeln</li> <li>Instrument reinigen</li> <li>Programmierte Werte überprüfen,<br/>siehe 5.3.1.2.35, p. 59</li> </ul> |
| E011   | Temp. Kurzschluss | <ul> <li>Verdrahtung Sensor überprüfen, siehe<br/>Anschlussdiagramm, p. 19</li> <li>Sensor überprüfen</li> </ul>                                                               |
| E012   | Temp. Unterbruch  | <ul> <li>Verdrahtung Sensor überprüfen, siehe<br/>Anschlussdiagramm, p. 19</li> <li>Sensor überprüfen</li> </ul>                                                               |
| E013   | Gehäusetemp. hoch | <ul> <li>Gehäuse-/Umgebungstemperatur<br/>prüfen</li> <li>Programmierte Werte überprüfen,<br/>siehe 5.3.1.4, p. 59</li> </ul>                                                  |
| E014   | Gehäusetemp. tief | <ul> <li>Gehäuse-/Umgebungstemperatur<br/>prüfen</li> <li>Programmierte Werte überprüfen,<br/>siehe 5.3.1.5, p. 59</li> </ul>                                                  |



| Fehler | Beschreibung        | Korrekturmassnahmen                                                                                                                |
|--------|---------------------|------------------------------------------------------------------------------------------------------------------------------------|
| E017   | Ueberw.zeit         | <ul> <li>Steuergerät oder Programmierung in<br/>Installation/Schaltkontakte überprüfen<br/>siehe 5.3.2 und 5.3.3, p. 60</li> </ul> |
| E024   | Schalteingang aktiv | <ul> <li>Siehe Menu 5.3.4, p. 63 ob Störung auf<br/>ja programmiert ist.</li> </ul>                                                |
| E026   | IC LM75             | <ul> <li>Service anrufen</li> </ul>                                                                                                |
| E030   | EEProm Front-End    | <ul> <li>Service anrufen</li> </ul>                                                                                                |
| E031   | Eichung Signalausg. | <ul> <li>Service anrufen</li> </ul>                                                                                                |
| E032   | Falsches Front-End  | <ul> <li>Service anrufen</li> </ul>                                                                                                |
| E033   | Einschalten         | <ul> <li>keine, Statusmeldung</li> </ul>                                                                                           |
| E034   | Ausschalten         | <ul> <li>keine, Statusmeldung</li> </ul>                                                                                           |





### 7.2. Die Sicherungen auswechseln

Bei durchgebrannten Sicherungen vor dem Auswechseln zuerst die Ursache ermitteln. Zum Ausbauen defekter Sicherungen eine Pinzette oder Spitzzange verwenden.

Nur Originalsicherungen von SWAN einsetzen.



A 1.25 AF/250V Instrumenten-Stromversorgung



# 8. Programmübersicht

Erklärungen zu den einzelnen Menüparametern finden Sie unter Programmliste und Erläuterungen, S. 49.

- Menü 1 Meldungen informiert über anstehende Fehler und Wartungsaufgaben und zeigt die Fehlerhistorie. Passwortschutz möglich. Es können keine Einstellungen geändert werden.
- Menü 2 Diagnose ist jederzeit für alle Anwender verfügbar. Kein Passwortschutz. Es können keine Einstellungen geändert werden.
- Menü 3 Wartung ist für den Kundendienst vorgesehen: Kalibrierung, Simulation der Ausgänge und Einstellung von Uhrzeit/Datum. Bitte per Passwort schützen.
- Menü 4 Betrieb ist für den Anwender vorgesehen und ermöglicht die Einstellung von Grenzwerten, Alarmwerten usw. Die Voreinstellung erfolgt über das Menü Installation (nur für den Systemtechniker). Bitte per Passwort schützen.
- Menü 5 Installation dient zur Programmierung von allen Einund Ausgängen, Messparametern, Schnittstelle, Passwörtern etc. Menü für den Systemtechniker. Passwort dringendst empfohlen.

### 8.1. Meldungen (Hauptmenü 1)

| Anliegende Fehler | Anliegende Fehler | 1.1.5* | * | Menünummern |
|-------------------|-------------------|--------|---|-------------|
| 1.1*              |                   |        |   |             |
| Meldungs-Liste    | Nummer            | 1.2.1* |   |             |
| 1.2*              | Datum/Uhrzeit     |        |   |             |





### 8.2. Diagnose (Hauptmenü 2)

| Identifikation | Bezeichnung       | AMI Powercon       |                          | *Menünummern    |
|----------------|-------------------|--------------------|--------------------------|-----------------|
| 2.1*           | Version           | V6.00-11/15        |                          |                 |
|                | Werksprüfung      | Instrument         | 2.1.3.1*                 |                 |
|                | 2.1.3*            | Hauptplatine       |                          |                 |
|                |                   | Front-End          |                          |                 |
|                | Betriebszeit      | Jahre, Tage, Stund | len, Minuten, Sekunden   | 2.1.4.1*        |
|                | 2.1.4*            |                    |                          |                 |
| Sensoren       | Leitf. Sensor     | Messwert           |                          |                 |
| 2.2*           | 2.2.1*            | Rohwert            |                          |                 |
|                |                   | Zellkonstante      |                          |                 |
|                |                   | Kal. History       | Nummer, Datum<br>Uhrzeit | 2.2.1.5.1*      |
|                |                   | 2.2.1.5*           |                          |                 |
|                | Verschiedenes     | Gehäusetemp.       | 2.2.2.1*                 |                 |
|                | 2.2.2*            |                    |                          |                 |
| Probe          | ID Probe          | 2.3.1*             |                          |                 |
| 2.3*           | Temperatur        |                    |                          |                 |
|                | (Pt1000)          |                    |                          |                 |
|                | Probenfluss       |                    |                          |                 |
|                | Rohwert           |                    |                          |                 |
| E/A-Zustände   | Sammelstörkontakt | 2.4.1*             |                          |                 |
| 2.4*           | Schaltausgang 1/2 | 2.4.2*             |                          |                 |
|                | Schalteingang     |                    |                          |                 |
|                | Signalausgang 3   |                    |                          |                 |
| Schnittstelle  | Protokoll         | 2.5.1*             |                          | (nur mit RS485- |
| 2.5*           | Baudrate          |                    |                          | Schnittstelle)  |





### 8.3. Wartung (Hauptmenü 3)

| Kalibrierung | Anweisungen befolgen | 3.1.5* |
|--------------|----------------------|--------|
| 3.1*         |                      |        |
| Simulation   | Sammelstörkontakt    | 3.3.1* |
| 3.2*         | Schaltausgang 1      | 3.3.2* |
|              | Schaltausgang 2      | 3.3.3* |
|              | Signalausgang 3      | 3.3.4* |
| Uhr stellen  | (Datum), (Uhrzeit)   |        |
| 3.4*         |                      |        |

### 8.4. Betrieb (Hauptmenü 4)

| Sensoren       | Filterzeitkonstante | 4.1.1*              |             |             |
|----------------|---------------------|---------------------|-------------|-------------|
| 4.10*          | Haltezeit nach Kal. | 4.1.2*              |             |             |
| Schaltkontakte | Sammelstörkontakt   | Alarm Leitfähigkeit | Alarm hoch  | 4.2.1.1.1*  |
| 4.2*           | 4.2.1*              | 4.2.1.1*            | Alarm tief  | 4.2.1.1.25* |
|                |                     |                     | Hysterese   | 4.2.1.1.35* |
|                |                     |                     | Verzögerung | 4.2.1.1.45* |
|                | Schaltausgang 1/2   | Sollwert            | 4.2.x.100*  |             |
|                | 4.2.2*/4.2.3*       | Hysterese           | 4.2.x.200*  |             |
|                |                     | Verzögerung         | 4.2.x.30*   |             |
|                | Schalteingang       | Aktiv               | 4.2.4.1*    |             |
|                | 4.2.4*              | Signalausgänge      | 4.2.4.2*    |             |
|                |                     | Ausgänge/Regler     | 4.2.4.3*    |             |
|                |                     | Fehler              | 4.2.4.4*    |             |
|                |                     | Verzögerung         | 4.2.4.5*    |             |
| Logger         | Logintervall        | 4.3.1*              |             |             |
| 4.3*           | Logger löschen      | 4.3.2*              |             |             |





### 8.5. Installation (Hauptmenü 5)

| Sensoren       | Durchfluss        | Keine               |                      | *Menünummern  |
|----------------|-------------------|---------------------|----------------------|---------------|
| 5.1*           | 5.1.1*            | Q-Flow              |                      |               |
|                | Sensorparameter   | Zellkonstante       | 5.1.2.1*             |               |
|                | 5.1.2*            | Temp. Korr.         | 5.1.2.2*             |               |
|                |                   | Kabellänge          | 5.1.2.3*             |               |
|                |                   | Masseinheit         | 5.1.2.4*             |               |
|                | Temp. Komp.       | Komp.               | Keine                |               |
|                | 5.1.3*            | 5.1.3.1*            | Koeffizient          |               |
|                |                   |                     | Neutrale Salze       |               |
|                |                   |                     | Reinstwasser         |               |
|                |                   |                     | Starke Säuren        |               |
|                |                   |                     | Starke Basen         |               |
|                |                   |                     | Ammoniak, Eth.am.    |               |
|                |                   |                     | Morpholin            |               |
| Signalausgänge | Signalausgang 3   | Parameter           | 5.2.1.1*             |               |
| 5.2*           | 5.2.1*            | Stromschleife       | 5.2.1.2*             |               |
|                |                   | Funktion            | 5.2.1.3*             |               |
|                |                   | Skalierung          | Bereich tief         | 5.2.1.40.10*  |
|                |                   | 5.2.1.40            | Bereich hoch         | 5.2.1.40.20*  |
| Schaltkontakte | Sammelstörkontakt | Alarm Leitfähigkeit | Alarm hoch           | 5.3.1.1.1.1*  |
| 5.3*           | 5.3.1*            | 5.3.1.1*            | Alarm tief           | 5.3.1.1.1.25* |
|                |                   |                     | Hysterese*           | 5.3.1.1.1.35  |
|                |                   |                     | Verzögerung          | 5.3.1.1.1.45* |
|                |                   | Probenfluss         | Alarm Durchfluss     | 5.3.1.2.1*    |
|                |                   | 5.3.1.2*            | Alarm hoch           | 5.3.1.2.2     |
|                |                   |                     | Alarm tief           | 5.3.1.2.35    |
|                |                   | Probentemp.         | Alarm hoch           | 5.3.1.3.1*    |
|                |                   | 5.3.1.3*            | Alarm tief           | 5.3.1.3.25*   |
|                |                   | Gehäusetemp. hoch   | 5.3.1.4*             |               |
|                |                   | Gehäusetemp. tief   | 5.3.1.5*             |               |
|                | Schaltausgang 1/2 | Funktion            | 5.3.2.1/5.3.3.1*     |               |
|                | 5.3.2/5.3.3*      | Parameter           | 5.3.2.20/ 5.3.3.20*  |               |
|                |                   | Sollwert            | 5.3.2.300/5.3.3.301* |               |
|                |                   | Hysterese           | 5.3.2.400/5.3.3.401* |               |
|                |                   | Verzögerung         | 5.3.2.50/ 5.3.3.50*  |               |
|                |                   |                     |                      |               |

### Programmübersicht



|               | Schalteingang    | Aktiv           | 5.3.4.1* | *Menünummern    |
|---------------|------------------|-----------------|----------|-----------------|
|               | 5.3.4*           | Signalausgänge  | 5.3.4.2* |                 |
|               |                  | Ausgänge/Regler | 5.3.4.3* |                 |
|               |                  | Fehler          | 5.3.4.4* |                 |
|               |                  | Verzögerung     | 5.3.4.5* |                 |
| Verschiedenes | Sprache          | 5.4.1*          |          |                 |
| 5.4*          | Werkseinstellung | 5.4.2*          |          |                 |
|               | Firmware laden   | 5.4.3*          |          |                 |
|               | Passwort         | Meldungen       | 5.4.4.1* |                 |
|               | 5.4.4*           | Wartung         | 5.4.4.2* |                 |
|               |                  | Betrieb         | 5.4.4.3* |                 |
|               |                  | Installation    | 5.4.4.4* |                 |
|               | ID Probe         | 5.4.5*          |          |                 |
| Schnittstelle | Protokoll        | 5.5.1*          |          | (nur mit RS485- |
| 5.5*          | Geräteadresse    | 5.5.21*         |          | Schnittstelle)  |
|               | Baudrate         | 5.5.31*         |          |                 |
|               | Parität          | 5.5.41*         |          |                 |





# 9. Programmliste und Erläuterungen

### 1 Meldungen

### 1.1 Anliegende Fehler

1.1.5 Bietet eine Liste mit aktuellen Fehlern und Statuszuständen (aktiv, bestätigt). Wird ein aktiver Fehler bestätigt, öffnet sich der Sammelstörkontakt wieder. Wird ein Fehler gelöscht, wird er in die Meldungs-Liste verschoben.

#### 1.2 Meldungs-Liste

1.2.1 Anzeige des Fehlerverlaufs: Fehlercode, Datum und Uhrzeit des Problems sowie Status (aktiv, bestätigt, geklärt). Es werden 65 Fehler gespeichert. Anschliessend werden die ältesten Fehler gelöscht, um Speicherplatz freizugeben (Zirkularpuffer).

### 2 Diagnose

Im Modus «Diagnose» können Werte nur angezeigt, jedoch nicht geändert werden.

#### 2.1 Identifikation

Bez.: Bezeichnung des Instruments

Version: Firmware des Instruments (z. B. V6.00-11/15)

- 2.1.4 Werksprüfung: Datum der Prüfung von Instrument, Hauptplatine und Frontend
- 2.1.5 Betriebszeit: Jahre, Tage, Stunden, Minuten, Sekunden

### 2.2 Sensoren

#### 2.2.1 Leitf. Sensor

- o *Messwert* in μS o *(Rohwert)* in μS
- o Zellkonstante
- **2.2.1.5** Kal. History: Diagnosewerte der letzten Kalibrierungen prüfen. Nur zu Diagnosezwecken.

o Nummer o Datum, Uhrzeit o Zellkonstante

Es werden maximal 64 Datensätze gespeichert. Eine Prozesskalibrierung entspricht einem Datensatz. Programmliste und Erläuterungen



#### 2.2.2 Verschiedenes:

2.2.2.1 *Gehäusetemp.:* aktuelle Temperatur in °C innerhalb des Messumformers.

#### 2.3 Probe

- 2.3.1 o *ID Probe:* zeigt die zugewiesene Probenidentifikation. Diese wird vom Bediener zur Kennzeichnung des Standorts der Probe festgelegt.
  - o *Temperatur: z*eigt die aktuelle Probentemperatur in °C. (*Pt 1000):* zeigt die aktuelle Temperatur in Ohm.
  - o *Probenfluss:* Anzeige des aktuellen Durchflusses in l/h (*Rohwert*) in Hz.

Der Probenfluss muss über 5 l/h liegen.

### 2.4 E/A-Zustände

Zeigt den aktuellen Status aller Ein- und Ausgänge.

|             | 5                      | 5 5                        |
|-------------|------------------------|----------------------------|
| 2.4.1/2.4.2 | Sammelstörkontakt:     | aktiv oder inaktiv         |
|             | Schaltausgang 1 und 2: | aktiv oder inaktiv         |
|             | Schalteingang:         | offen oder geschlossen     |
|             | Signalausgang 3        | aktuelle Stromstärke in mA |

#### 2.5 Schnittstelle

Nur verfügbar, wenn optionale Schnittstelle installiert wurde. Überprüfung der programmierten Kommunikationseinstellungen.



Programmliste und Erläuterungen



### 3 Wartung

### 3.1 Kalibrierung

Bildschirmanweisungen befolgen. Wert mit [Enter] speichern.

### 3.2 Simulation

Um den Wert eines Schaltausgangs anzuzeigen,

- Sammelstörkontakt
- Schaltausgang 1 und 2
- Signalausgang 3

mit der Taste [\_\_\_\_] oder [\_\_\_\_] auswählen.

[Enter] drücken.

Den Zustand des ausgewählten Objekts mit den Tasten [\_\_\_\_] oder [\_\_\_\_] ändern.

[Enter] drücken.

 $\Rightarrow$  Der Wert wird mit Hilfe des Schalt-/Signalausgangs simuliert.

- 3.2.1 Sammelstörkontakt: aktiv oder inaktiv
- 3.2.2 Schaltausgang 1:
- aktiv oder inaktiv aktiv oder inaktiv
- 3.2.3 Schaltausgang 23.2.4 Signalausgang 3
- Eingegebener Wert in mA
- Werden 20 min lang keine Tasten gedrückt, schaltet das Instrument wieder in den Normalmodus. Mit Verlassen des Menüs werden alle simulierten Werte zurückgesetzt.

### 3.3 Zeit einstellen

Zum Einstellen von Datum und Uhrzeit.

Programmliste und Erläuterungen



### 4 Betrieb

#### 4.1 Sensoren

- 4.1.1 Filterzeitkonstante: zum Abflachen von Störsignalen. Je grösser die Filterzeitkonstante, desto langsamer reagiert das System auf geänderte Messwerte. Bereich: 5–300 sec
- 4.1.2 Haltezeit n. Kal.: Verzögerung, die die Stabilisierung des Instruments nach der Kalibrierung ermöglicht. Während der Kalibrierung plus Verzögerungszeit werden die Signalausgänge (auf dem letzten Wert) eingefroren, Alarm- und Grenzwerte sind nicht aktiv. Bereich: 0–6000 sec

### 4.2 Schaltausgänge

Siehe Schaltkontakte, S. 22.

### 4.3 Logger

Das Instrument verfügt über einen internen Logger. Die Daten können mit dem eingebauten USB Stick auf einen PC kopiert werden. Der Logger kann ca. 1500 Datensätze speichern. Die Datensätze bestehen aus: Datum, Zeit, Alarmen, Messwert, Messwert unkompensiert, Temperatur, Durchfluss. Bereich: 1 Sekunde – 1 Stunde

4.3.1 *Logintervall:* Passendes Logintervall auswählen. In der Tabelle unten erhalten Sie Angaben zur maximalen Protokolldauer. Ist der Logpuffer voll, wird der älteste Datensatz gelöscht, um Platz für den neuesten zu schaffen (Zirkularpuffer).

| Intervall | 1 s    | 5 s | 1 min | 5 min  | 10 min  | 30 min  | 1 h     |
|-----------|--------|-----|-------|--------|---------|---------|---------|
| Zeit      | 25 min | 2 h | 25 h  | 5 Tage | 10 Tage | 31 Tage | 62 Tage |

- 4.3.2 *Logger löschen:* Wenn mit **Ja** bestätigt, werden alle Logger-Daten gelöscht. Es wird eine neue Datenserie gestartet.
- 4.3.3 USB Stick entfernen: Mit dieser Funktion werden alle Loggerdaten auf den USB-Stick kopiert und dieser danach deaktiviert. Nur verfügbar, wenn optionale Schnittstelle installiert wurde.

Programmliste und Erläuterungen



### **5** Installation

#### 5.1 Sensoren

#### 5.1.1 Durchfluss:

- Keiner
- Q-Flow

Wenn eine QV-Flow Durchflusszelle installiert ist, «Q-Flow» wählen um den Probenfluss zu überwachen und anzuzeigen.

#### 5.1.2 Sensorparameter

- 5.1.2.1 *Zellkonstante*: auf dem Sensoretikett aufgedruckte Zellkonstante eingeben.
- 5.1.2.2 *Temp. Korr.:* auf dem Sensoretikett aufgedruckte Temperaturkorrektur eingeben.
- 5.1.2.3 *Kabellänge:* Kabellänge eingeben. Wert auf 0.0 m einstellen, wenn die Sensoren in der Durchflusszelle von AMI-Monitor installiert wurden.
- 5.1.2.4 *Masseinheit:* Als Masseinheit µs/cm oder µs/m auswählen.

#### 5.1.3 Temp. Komp.

- 5.1.3.1 *Komp.:* verfügbare Temperaturmodelle sind:
  - Keine
  - Koeffizient
  - Neutrale Salze
  - Reinstwasser
  - Starke Säuren
  - Starke Basen
  - Ammoniak, Eth.am.
  - Morpholin

#### 5.1.4 Qualitätssicherung

Nicht zutreffend.

Programmliste und Erläuterungen



### 5.2 Signalausgänge

#### 5.2.1 Signalausgang 3 (Signalausgänge 1 und 2 sind deaktiviert)

- 5.2.1.1 *Parameter:* Weisen Sie dem Signalausgang einen der Prozesswerte zu. Verfügbare Werte:
  - Leitfähigkeit
  - Temperatur
  - Probenfluss
  - Leitf. uc
- 5.2.1.2 *Stromschleife:* Wählen Sie den aktuellen Bereich des Signalausgangs. Stellen Sie sicher, dass das angeschlossene Gerät mit demselben Strombereich arbeitet. Verfügbare Bereiche: 0–20 mA oder 4–20 mA
- 5.2.1.3 *Funktion:* Legen Sie fest, ob der Signalausgang zur Übertragung von Prozesswerten oder zur Ansteuerung von Reglereinheiten verwendet wird. Verfügbar sind:
  - linear, bilinear oder logarithmisch für Prozesswerte. Siehe Als Prozesswerte, S. 54.
  - Regler auf-/abwärts für die Controller. Siehe Als Steuerausgang, S. 56.

Als Der Prozesswert kann auf 3 Arten dargestellt werden: linear, bilinear oder logarithmisch. Siehe nachfolgende Grafik.



### Programmliste und Erläuterungen





- X Messwert (logarithmisch)
- **5.2.1.40** Skalierung: Anfangs- und Endpunkt (hoher/niedriger Bereich) der linearen bzw. logarithmischen Skala und dazu den Mittelpunkt der bilinearen Skala eingeben.

#### Parameter Leitfähigkeit:

- 5.2.1.40.10 Bereich tief: 0 μS-300 mS
- 5.2.1.40.20 Bereich hoch: 0  $\mu$ S-300 mS

#### **Parameter Temperatur**

- 5.2.1.40.11 Bereich tief: -25 bis +270 °C
- 5.2.1.40.21 Bereich hoch: -25 bis +270 °C

#### **Parameter Probenfluss**

- 5.2.1.40.12 Bereich tief: 0-50 l/h
- 5.2.1.40.22 Bereich hoch: 0-50 l/h

#### Parameter Leitf. uc:

- 5.2.1.40.13 Bereich tief: 0 µS-300 mS
- 5.2.1.40.23 Bereich hoch: 0 µS-300 mS



#### Als Steuerausgang Signalausgänge können zur Ansteuerung von Reglereinheiten verwendet werden. Wir unterscheiden dabei zwischen unterschiedlichen Typen:

- P-Controller: Die Controller-Aktion ist proportional zur Abweichung vom Sollwert. Der Controller wird durch das P-Band gekennzeichnet. Im Steady-State wird der Sollwert niemals erreicht. Die Abweichung wird als Steady-State-Fehler bezeichnet. Parameter: Sollwert, P-Band
- PI-Controller: Die Kombination aus einem P-Controller mit einem I-Controller minimiert den Steady-State-Fehler. Wird die Nachstellzeit auf «Null» gesetzt, wird der I-Controller abgeschaltet. Parameter: Sollwert, P-Band, Nachstellzeit
- PD-Controller: Die Kombination aus einem P-Controller mit einem D-Controller minimiert die Reaktionszeit bei einer schnellen Änderung des Prozesswerts. Wird die Vorhaltezeit auf «Null» gesetzt, wird der D-Controller abgeschaltet.
   Parameter: Sollwert, P-Band, Vorhaltezeit
- PID-Controller: Die Kombination aus einem P-, I- und D-Controller ermöglicht eine angemessene Kontrolle des Prozesses. Parameter: Sollwert, P-Band, Nachstellzeit, Vorhaltezeit

Ziegler-Nichols-Methode zur Optimierung eines PID-Controllers: **Parameter:** Sollwert, P-Band, Nachstellzeit, Vorhaltezeit



Der Schnittpunkt der Tangente mit der entsprechenden Achse führt zu den Parametern a und L.



Näheres zum Anschliessen und Programmieren findet sich im Handbuch zur jeweiligen Steuereinheit. Regler auf-/abwärts wählen.

#### Regler aufwärts, Regler abwärts

Sollwert: benutzerdefinierter Prozesswert für den ausgewählten Parameter.

*P-Band:* Bereich unterhalb (Aufwärtsregler) oder oberhalb (Abwärtsregler) des Sollwerts, wobei die Dosierungsintensität von 100 bis auf 0% reduziert werden kann, um den Sollwert überschreitungsfrei zu erreichen.

| <b>5.2.1.43</b><br>5.2.1.43.10 | <b>Regelparameter</b> : wenn Parameter = Leitfähigkeit<br>Sollwert<br>Bereich: 0 μS–300 mS                                                                                                      |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.2.1.43.20                    | P-Band:<br>Bereich: 0 μS–300 mS                                                                                                                                                                 |
| <b>5.2.1.43</b><br>5.2.1.43.11 | <b>Regelparameter</b> : wenn Parameter = Temperatur<br>Sollwert<br>Bereich: -25 bis +270 °C                                                                                                     |
| 5.2.1.43.21                    | P-Band:<br>Bereich: 0 bis +100 °C                                                                                                                                                               |
| 5.2.1.43                       | Regelparameter: wenn Parameter = Probenfluss                                                                                                                                                    |
| 5.2.1.43.12                    | Sollwert<br>Bereich: 0–50 l/h                                                                                                                                                                   |
| 5.2.1.43.22                    | P-Band:<br>Bereich: 0–50 I/h                                                                                                                                                                    |
| 5.2.1.43                       | Regelparameter: wenn Parameter = Leitf. uc.                                                                                                                                                     |
| 5.2.1.43.13                    | Sollwert<br>Bereich: 0 μS–300 mS                                                                                                                                                                |
| 5.2.1.43.23                    | P-Band:<br>Bereich: 0 μS–300 mS                                                                                                                                                                 |
| 5.2.1.43.3                     | <i>Nachstellzeit:</i> die Zeit, bis die Schrittreaktion eines einzelnen<br>I-Controllers denselben Wert erreicht, der plötzlich von einem<br>P-Controller erreicht wird.<br>Bereich: 0–9000 Sec |
| 5.2.1.43.4                     | Vorhaltezeit: die Zeit, bis die Anstiegsreaktion eines einzelnen<br>P-Controllers denselben Wert erreicht, der plötzlich von einem<br>D-Controller erreicht wird.<br>Bereich: 0–9000 Sec        |



5.2.1.43.5 Überwachungszeit: Läuft eine Controller-Aktion (Dosierintensität) während eines definierten Zeitraums konstant mit mehr als 90% und erreicht der Prozesswert nicht den Sollwert, wird der Dosierprozess aus Sicherheitsgründen gestoppt. Bereich: 0–720 min

### 5.3 Schaltkontakte

**5.3.1 Sammelstörkontakt:** Der Sammelstörkontakt wird als kumulativer Fehlerindikator verwendet. Unter normalen Betriebsbedingungen ist der Kontakt aktiv.

Der Kontakt ist unter folgenden Bedingungen inaktiv:

- Stromausfall
- Feststellung von Systemfehlern wie defekte Sensoren oder elektronische Teile
- Hohe Gehäusetemperatur
- Prozesswerte ausserhalb der programmierten Bereiche

Alarmschwellenwerte, Hysteresewerte und Verzögerungszeiten für folgende Parameter programmieren:

- Alarm Leitfähigkeit
- Probenfluss
- Probentemp.
- · Gehäusetemp. hoch
- Gehäusetemp. tief
- 5.3.1.1 Alarm Leitfähigkeit
- 5.3.1.1.1 Alarm hoch: Steigt der gemessene Wert über den Wert des Parameters «Alarm hoch», wird der Sammelstörkontakt aktiviert und in der Meldungs-Liste wird E001 angezeigt. Bereich: 0 μS–300 mS
- 5.3.1.1.25 *Alarm tief:* Fällt der gemessene Wert unter den Wert des Parameters «Alarm tief», wird der Sammelstörkontakt aktiviert und in der Meldungs-Liste wird E002 angezeigt. Bereich: 0 μS-300 mS
- 5.3.1.1.35 *Hysterese:* Innerhalb des Hysteresebereichs reagiert der Schaltausgang nicht. Dies verhindert eine Beschädigung der Schaltkontakte, wenn der Messwert um den Alarmwert schwankt. Bereich: 0 μS–300 mS
- 5.3.1.1.45 *Verzögerung:* Zeit, für die die Aktivierung des Alarms verzögert wird, wenn der Messwert über/unter dem programmierten Alarm liegt. Bereich: 0–28 800 Sec



- 5.3.1.2 Probenfluss: Probenfluss für die Alarmauslösung programmieren.
- 5.3.1.2.1 *Durchflussalarm:* Programmieren Sie, ob der Sammelstörkontakt bei einem Durchflussalarm aktiviert werden soll. Wählen Sie «Ja» oder «Nein». Der Durchflussalarm wird immer auf dem Display und in der Liste aktueller Fehler angezeigt bzw. in Meldungs-Liste und Logger gespeichert.

Verfügbare Werte: «Ja» oder «Nein»

*Hinweis:* Für eine korrekte Messung ist ein ausreichender Durchfluss Voraussetzung. Wir empfehlen daher die Option «Ja».

- 5.3.1.2.2 Alarm hoch: Steigt der gemessene Wert über den programmierten Wert, wird in der Meldungs-Liste E009 angezeigt. Bereich: 10–50 l/h
- 5.3.1.2.35 *Alarm tief:* Fällt der gemessene Wert unter den programmierten Wert, wird in der Meldungs-Liste E010 angezeigt. Bereich: 0–9 l/h
  - 5.3.1.3 Probentemp.
  - 5.3.1.3.1 Alarm hoch: Steigt der gemessene Wert über den Wert des Parameters «Alarm hoch», wird der Sammelstörkontakt aktiviert und in der Meldungs-Liste wird E007 angezeigt. Bereich: 30–200 °C
- 5.3.1.3.25 *Alarm tief:* Fällt der gemessene Wert unter den Wert des Parameters «Alarm tief», wird der Sammelstörkontakt aktiviert und in der Meldungs-Liste wird E008 angezeigt. Bereich: -10 bis +20 °C

#### 5.3.1.4 Gehäusetemp. hoch

Alarm hoch: Wert «Alarm hoch» für die Temperatur des Elektronikgehäuses festlegen. Übersteigt der Messwert den programmierten Parameter, wird E013 angezeigt. Bereich: 30–75 °C

5.3.1.5 Gehäusetemp. tief

Alarm tief: Wert «Alarm hoch» für die Temperatur des Elektronikgehäuses festlegen. Fällt die Temperatur unter den programmierten Parameter, wird E014 angezeigt. Bereich: -10 bis +20 °C



**5.3.2 und 5.3.3** Schaltausgang 1 und 2: Die Funktion von Schaltkontakt 1 oder 2 wird vom Benutzer definiert:

*Hinweis:* Die Navigation der Menüs <Schaltausgang 1> und <Schaltausgang 2> ist identisch. Der Einfachheit halber werden im Folgenden nur Menünummern für Schaltausgang 1 verwendet.

- 1 Zunächst eine der folgenden Funktionen wählen:
  - Oberer/unterer Grenzwert
  - Regler, Regler auf./abw.
  - Zeitschaltuhr oder
  - Feldbus
- 2 Geben Sie dann die erforderlichen Daten je nach gewählter Funktion ein. Diese Werte können auch über Menü 4.2 Schaltausgänge, S. 52 konfiguriert werden.
- 5.3.2.1 Funktion = Oberer/unterer Grenzwert

Werden die Schaltausgänge als Schalter für obere/untere Grenzwerte verwendet, sind folgende Variablen zu programmieren:

- 5.3.2.20 Parameter: Prozesswert wählen
- 5.3.2.300 *Sollwert:* Steigt der gemessene Wert über bzw. fällt unter den Sollwert, wird der Schaltkontakt aktiviert.

| Parameter     | Bereich         |  |  |  |  |  |
|---------------|-----------------|--|--|--|--|--|
| Leitfähigkeit | 0 μS–300 mS     |  |  |  |  |  |
| Temperatur    | -25 bis +270 °C |  |  |  |  |  |
| Probenfluss   | 0–50 l/h        |  |  |  |  |  |
| Leitf. uc     | 0 µS–300 mS     |  |  |  |  |  |

5.3.2.400 *Hysterese:* Innerhalb des Hysteresebereichs reagiert der Schaltausgang nicht. Dies verhindert eine Beschädigung der Schaltkontakte, wenn der Messwert um den Alarmwert schwankt.

| Parameter     | Bereich       |
|---------------|---------------|
| Leitfähigkeit | 0 μS–300 mS   |
| Temperatur    | 0 bis +100 °C |
| Probenfluss   | 0–50 l/h      |
| Leitf. uc     | 0 μS–300 mS   |

# SU2211 ANALYTICAL INSTRUMENTS

| 5.3.2.50    | <i>Verzögerung:</i> Zeit, für die die Aktivierung des Alarms verzögert wird,<br>wenn der Messwert über/unter dem programmierten Alarm liegt. Be-<br>reich: 0–600 Sec                                                                                                                                                                                                                                     |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.3.2.1     | Funktion = Regler auf-/abwärts                                                                                                                                                                                                                                                                                                                                                                           |
| 5.3.2.22    | Die Schaltausgänge können verwendet werden, um Steuereinheiten<br>wie Magnetventile, Membran-Dosierpumpen oder Stellmotoren an-<br>zusteuern. Zum Ansteuern eines Stellmotors werden beide Schalt-<br>ausgänge benötigt, einer zum Öffnen und einer zum Schliessen.<br><i>Parameter:</i> Wählen Sie einen der folgenden Prozesswerte.<br>• Leitfähigkeit<br>• Temperatur<br>• Probenfluss<br>• Leitf. uc |
| 5.3.2.32    | <ul> <li>Einstellungen: das jeweilige Stellglied wählen:</li> <li>Zeitproportional</li> <li>Frequenz</li> <li>Stellmotor</li> </ul>                                                                                                                                                                                                                                                                      |
| 5.3.2.32.1  | Stellglied = Zeitproportional                                                                                                                                                                                                                                                                                                                                                                            |
| 5.3.2.32.20 | Beispiele für Messgeräte, die zeitproportional angesteuert werden:<br>Magnetventile, Schlauchpumpen.<br>Die Dosierung wird über die Funktionsdauer geregelt.<br><i>Zyklusdauer:</i> Dauer eines Kontrollzyklus (Wechsel AN/AUS).                                                                                                                                                                         |
|             | Bereich: 0-600 Sec                                                                                                                                                                                                                                                                                                                                                                                       |
| 5.3.2.32.30 | Ansprechzeit: minimale Dauer, die das Messgerät zur Reaktion benötigt. Bereich: 0–240 Sec                                                                                                                                                                                                                                                                                                                |
| 5.3.2.32.4  | Regelparameter<br>Bereich für jeden Parameter wie unter 5.2.1.43, S. 57.                                                                                                                                                                                                                                                                                                                                 |
| 5.3.2.32.1  | Stellglied = Frequenz                                                                                                                                                                                                                                                                                                                                                                                    |
|             | Beispiele für Messgeräte, die per Impulsfrequenz gesteuert<br>werden, sind die klassischen Membranpumpen mit potenzialfreiem<br>Auslöseeingang. Die Dosierung wird über die Wiederholungs-<br>geschwindigkeit der Dosierstösse geregelt.                                                                                                                                                                 |
| 5.3.2.32.21 | <i>Impulsfrequenz</i> : max. Anzahl Impulse pro Minute, auf die das<br>Gerät reagieren kann. Bereich: 20–300/min                                                                                                                                                                                                                                                                                         |
| 5.3.2.32.31 | Regelparameter<br>Bereich für jeden Parameter wie unter 5.2.1.43, S. 57.                                                                                                                                                                                                                                                                                                                                 |

Programmliste und Erläuterungen

62



| 5.3.2.32.1  | Stellglied = Stellmotor                                                                                                                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Die Dosierung wird über die Position eines motorbetriebenen Misch-<br>ventils geregelt.                                                                                        |
| 5.3.2.32.22 | <i>Laufzeit:</i> Zeit, die zur Öffnung eines vollständig geschlossenen Ven-<br>tils benötigt wird.<br>Bereich: 5–300 Sec                                                       |
| 5.3.2.32.32 | <i>Nullzone:</i> minimale Reaktionszeit in % der Laufzeit. Ist die ange-<br>forderte Dosiermenge kleiner als die Reaktionszeit, erfolgt keine Än-<br>derung.<br>Bereich: 1–20% |
| 5.3.2.32.4  | Regelparameter                                                                                                                                                                 |
|             | Bereich für jeden Parameter wie unter 5.2.1.43, S. 57.                                                                                                                         |
| 5.3.2.1     | Funktion = Timer                                                                                                                                                               |
|             | Der Schaltausgang wird wiederholt in Abhängigkeit vom program-<br>mierten Zeitplan geschlossen.                                                                                |
| 5.3.2.24    | Betriebsart: verfügbar sind Intervall, Täglich und Wöchentlich.                                                                                                                |
| 5.3.2.340   | Intervall/Startzeit/Kalender: abhängig von den Optionen der Be-<br>triebsart.                                                                                                  |
| 5.3.2.44    | <i>Laufzeit</i> : Zeit, für die der Schaltausgang geschlossen bleibt.<br>Bereich: 5–32'400 Sec                                                                                 |
| 5.3.2.54    | Verzögerung: Laufzeit plus Verzögerungszeit, in der die Signal- und Regelungsausgänge im unten programmierten Betriebsmodus gehalten werden.                                   |
| 5000        | Bereich: 0–6'000 Sec                                                                                                                                                           |
| 5.3.2.6     | des Relais auswählen.<br>Verfügbare Werte: forts., halten, aus                                                                                                                 |
| 5.3.2.7     | Ausgänge/Regler: Verhalten der Regelungsausgänge beim Schlies-<br>sen des Relais auswählen.<br>Verfügbare Werte: forts., halten, aus                                           |
| 5.3.2.1     | Funktion = Feldbus                                                                                                                                                             |
|             | Der Schaltausgang wird per Profibus gesteuert. Es sind keine weiteren Parameter notwendig.                                                                                     |



| 5.3.4   | <b>Schalteingang:</b> Die Funktionen der Schalt- und Signalausgänge können je nach Position des Eingangskontakts definiert werden, d. h. «keine Funktion», «geschlossen» oder «offen». |                                                                                   |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
| 5.3.4.1 | Aktiv: Definiere                                                                                                                                                                       | Aktiv: Definieren Sie, wann der Schalteingang aktiv sein soll:                    |  |  |  |
|         | Nein:                                                                                                                                                                                  | Der Schalteingang ist nie aktiv.                                                  |  |  |  |
|         | Wenn<br>geschlossen:                                                                                                                                                                   | Der Schalteingang ist aktiv, wenn der Eingangs-<br>schaltkontakt geschlossen ist. |  |  |  |
|         | Wenn offen:                                                                                                                                                                            | Der Schalteingang ist aktiv, wenn der Eingangs-<br>schaltkontakt offen ist.       |  |  |  |
| 5.3.4.2 | S <i>ignalausgäng</i><br>ge bei aktivem                                                                                                                                                | e: Wählen Sie den Betriebsmodus der Signalausgän-<br>Schaltkontakt:               |  |  |  |

| Fortfahren: | Die Signalausgänge geben den Messwert aus.                                       |  |  |  |
|-------------|----------------------------------------------------------------------------------|--|--|--|
| Halten:     | Die Signalausgänge geben den letzten gültigen<br>Messwert aus.                   |  |  |  |
|             | Die Messung wird unterbrochen. Es werden nur<br>schwerwiegende Fehler angezeigt. |  |  |  |
| Aus:        | Auf 0 bzw. 4 mA eingestellt. Es werden nur schwer<br>wiegende Fehler angezeigt.  |  |  |  |

5.3.4.3 Ausgänge/Regler: (Schaltkontakt oder Signalausgang):

| Fortfahren: | Der Regler arbeitet normal weiter.                           |
|-------------|--------------------------------------------------------------|
| Halten:     | Der Regler arbeitet mit dem letzten gültigen Wert<br>weiter. |
| A           | Dev Devley wind a verse a haltet                             |

Aus: Der Regler wird ausgeschaltet.

#### 5.3.4.4 *Fehler:*

- Nein: Es wird keine Meldung in der Liste der aktuellen Fehler angezeigt und der Sammelstörkontakt wird bei aktivem Schalteingang nicht geschlossen.
- Ja: Meldung E024 wird ausgegeben und in der Liste gespeichert. Der Sammelstörkontakt wird bei aktivem Schalteingang geschlossen.
- 5.3.4.5 *Verzögerung:* Wartezeit für das Instrument ab Deaktivierung des Schalteingangs bis zur Wiederaufnahme des Normalbetriebs. Bereich: 0–6000 Sec

Programmliste und Erläuterungen



### **5.4 Verschiedenes**

- 5.4.1 *Sprache:* Legen Sie die gewünschte Sprache fest. Mögliche Einstellungen: Deutsch/English/Français/Español
- 5.4.2 *Werkseinstellung:* Für das Zurücksetzen des Instruments auf die Werkseinstellungen gibt es drei Möglichkeiten:
  - Kalibrierung: setzt die Kalibrierungswerte auf die Werkseinstellung zurück. Alle anderen Werte bleiben gespeichert.
  - **Teilweise:** Die Kommunikationsparameter bleiben gespeichert. Alle anderen Werte werden auf die Werkseinstellung zurückgesetzt.
  - Vollständig: setzt alle Werte einschliesslich der Kommunikationsparameter zur
    ück.
- 5.4.3 *Firmware laden:* Die Aktualisierung der Firmware sollte nur von geschulten Servicemitarbeitern durchgeführt werden.
- 5.4.4 **Zugriff:** Legen Sie ein Passwort fest, das nicht «0000» ist, um den unberechtigten Zugriff auf die Menüs «Meldungen», «Wartung», «Betrieb» und «Installation» zu verhindern.

Jedes Menü kann durch ein eigenes Passwort geschützt werden. Wenn Sie die Passwörter vergessen haben, wenden Sie sich an den nächsten SWAN-Vertreter.

5.4.5 *ID Probe:* Identifizieren Sie den Prozesswert mit einem sinnvollen Text, z. B. der KKS-Nummer.

### 5.5 Schnittstelle

Wählen Sie eines der folgenden Kommunikationsprotokolle. Je nach Auswahl müssen verschiedene Parameter definiert werden.

| 5.5.1                                      | Protokoll: Profibus                                                        |                                                                                               |
|--------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 5.5.20                                     | Geräteadresse:                                                             | Bereich: 0–126                                                                                |
| 5.5.30                                     | ID-Nr.:                                                                    | Bereich: Analysegeräte; Hersteller; Multivaria-<br>bel                                        |
| 5.5.40                                     | Lokale Bedienung:                                                          | Bereich: Freigegeben, Gesperrt                                                                |
|                                            |                                                                            |                                                                                               |
| 5.5.1                                      | Protokoll: Modbus                                                          | RTU                                                                                           |
| <b>5.5.1</b><br>5.5.21                     | Protokoll: Modbus<br>Geräteadresse:                                        | RTU<br>Bereich: 0–126                                                                         |
| <b>5.5.1</b><br>5.5.21<br>5.5.31           | <i>Protokoll:</i> <b>Modbus</b><br>Geräteadresse:<br>Baudrate:             | <b>RTU</b><br>Bereich: 0–126<br>Bereich: 1200–115200 Baud                                     |
| <b>5.5.1</b><br>5.5.21<br>5.5.31<br>5.5.41 | <i>Protokoll:</i> <b>Modbus</b><br>Geräteadresse:<br>Baudrate:<br>Parität: | <b>RTU</b><br>Bereich: 0–126<br>Bereich: 1200–115200 Baud<br>Bereich: keine, gerade, ungerade |

5.5.1 Protokoll: USB-Stick



# 10. Werkseinstellungen

#### Betrieb: Sensoren: Schaltkontakte Sammelstörkontakt......wie in Installation Schaltausgang 1/2 .....wie in Installation Schalteingang ......wie in Installation Logger Logger löschen: ...... nein Installation: Sensoren Durchfluss:.....Keiner Sensorparameter: Zellkonstante......0.0415 cm<sup>-1</sup> Sensorparameter; Temp. korr. ..... 0.00 °C Sensorparameter; Kabellänge ...... 0.0 m Temp. kompensation; Komp. .....keine Qualitätssicherung; Qualitätsstufe .....0: Aus Signalausgang Parameter: ...... Leitfähigkeit Funktion: ..... linear Skalierung: Skalenende:.....1 mS Sammelstör-Alarm Leitfähigkeit: kontakt: Alarm tief:.....0.000 µS Verzögerung: ...... 5 s Sample Flow: Probenfluss...... ja Probentemp: Alarm tief:.....0 °C Gehäusetemp. tief: ...... 0 °C





|                | Funktion:                                                                                                         | Ob. GW.          |
|----------------|-------------------------------------------------------------------------------------------------------------------|------------------|
| 1/2            | Parameter:                                                                                                        | Leitfähigkeit    |
| :              | sollwert:                                                                                                         |                  |
|                | Hysterese:                                                                                                        | 10 µS            |
|                | Verzögerung:                                                                                                      | 30 s             |
|                |                                                                                                                   |                  |
|                | Wenn Funktion = Control Aufw. oder Abw. Regl                                                                      | er:              |
|                |                                                                                                                   | Leitianigkeit    |
|                | Einstellungen: Stellglied:                                                                                        | Frequenz         |
|                | Einstellungen: Pulsfrequenz:                                                                                      | 120/min          |
|                | Einstellungen: Regelarameter: Sollwert:                                                                           |                  |
|                | Einstellungen: Regelarameter: P-band:                                                                             | 10.0 µS          |
|                | Einstellungen: Regelarameter: Nachstellzeit:                                                                      | 0 s              |
|                | Einstellungen: Regelarameter: Vornaltezelt:                                                                       |                  |
|                | Einstellungen: Regelarameter: Uberwachungsze                                                                      | it:0 min         |
|                | Einstellungen: Stellglied:                                                                                        | Zeitproportional |
|                | Zykluszeit:                                                                                                       | 60 s             |
|                | Ansprechzeit:                                                                                                     | 10 s             |
|                | Einstellungen: Stellglied                                                                                         | Stellmotor       |
|                | Laufzeit:                                                                                                         | 60 s             |
|                | Neutrale Zone:                                                                                                    |                  |
|                | Wann Funktion - Zaitaahaltuhru                                                                                    |                  |
|                | Betriebsart:                                                                                                      | Intervall        |
|                | Intervall:                                                                                                        | 1 min            |
|                | Betriebsart <sup>.</sup>                                                                                          | täglich          |
|                | Startzeit <sup>.</sup>                                                                                            | 00 00 00         |
|                | Betriebsart:                                                                                                      | wöchentlich      |
|                | Kelenden Stertzeit:                                                                                               |                  |
|                | Kalender: Montag bis Sonntag:                                                                                     |                  |
|                |                                                                                                                   |                  |
|                | Aktivzeit <sup>.</sup>                                                                                            | 10 s             |
| ;              | Aktivzeit:                                                                                                        |                  |
|                | Aktivzeit:<br>Verzögerung:<br>Signalausgänge:                                                                     |                  |
|                | Aktivzeit:<br>Verzögerung:<br>Signalausgänge:<br>Ausgänge/Regler:                                                 |                  |
| Schalteingang: | Aktivzeit:<br>Verzögerung:<br>Signalausgänge:<br>Ausgänge/Regler:<br>Aktiv.v.vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv    |                  |
| Schalteingang: | Aktivzeit:<br>Verzögerung:<br>Signalausgänge:<br>Ausgänge/Regler:<br>Aktivv<br>Signalausgänge                     |                  |
| Schalteingang: | Aktivzeit:<br>Verzögerung:<br>Signalausgänge:<br>Ausgänge/Regler:<br>Aktivv<br>Signalausgänge<br>Ausgänge/Regler. |                  |
| Schalteingang: | Aktivzeit:<br>Verzögerung:<br>Signalausgänge:<br>Ausgänge/Regler:<br>Aktivv<br>Signalausgänge<br>Ausgänge/Reglerv |                  |



| Diverses      | Sprache:         | Englisch                    |
|---------------|------------------|-----------------------------|
|               | Werkeinstellung: |                             |
|               | Firmware Laden:  | nein                        |
|               | Passwort:        | für alle Betriebsarten 0000 |
|               | ID Probe:        |                             |
| Schnittstelle | Protokoll        | USB Stick                   |







# 11. Index

### Α

| Abschaltung       |   | • |   | • |   |   |   |   | • | 20 |
|-------------------|---|---|---|---|---|---|---|---|---|----|
| Anwendungsbereich |   |   |   |   |   |   |   |   |   | 9  |
| Ŭ                 |   |   |   |   |   |   |   |   |   |    |
| R                 |   |   |   |   |   |   |   |   |   |    |
|                   |   |   |   |   |   |   |   |   |   |    |
| Betriebszeit      | • | • | • | • | • | • | • | • | • | 14 |
|                   |   |   |   |   |   |   |   |   |   |    |

### С

| Checkliste |  | • | • | • |  |  |  |  |  | 16 |
|------------|--|---|---|---|--|--|--|--|--|----|
|            |  |   |   |   |  |  |  |  |  |    |

### Е

| -                      |    |
|------------------------|----|
| Einlaufzeit            | 16 |
| Einrichten             | 24 |
| Einschalten            | 16 |
| Elektrische Anschlüsse | 16 |
| Externe Geräte         | 20 |
|                        |    |

### F

| Fehlerliste |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 40 |
|-------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| Fluidik     | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 12 |

### I

| Installation          |   |   |   |   |   |   |   | 16 |
|-----------------------|---|---|---|---|---|---|---|----|
| Instrument einrichten | • | • | • | • | • | • | • | 16 |

### Κ

| Kabelstärke. |  |  |  |  |  |  |     | 18 |
|--------------|--|--|--|--|--|--|-----|----|
| Klemmen      |  |  |  |  |  |  | 19, | 22 |

### L

| Ladevorgang. | • | • | • | • | • | • | • | • | • | • | • | • | • | 20 |
|--------------|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
|--------------|---|---|---|---|---|---|---|---|---|---|---|---|---|----|

### Μ

| Masseinheit |   |   |   |   |   |   |   |   |   |   |   |   |   | 24 |
|-------------|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| Messbereich |   |   |   |   |   |   |   |   |   |   |   |   |   | 14 |
| Messprinzip | • | • | • | • | • | • | • | • | • | • | • | • | • | 11 |

| N<br>Netzadapter                                             | 21                                                       |
|--------------------------------------------------------------|----------------------------------------------------------|
| <b>P</b><br>Probenanforderungen                              | 14                                                       |
| <b>R</b><br>Reinigen                                         | 31                                                       |
| S<br>Sammelstörkontakt                                       | 22<br>10<br>22<br>24<br>10<br>23<br>28<br>11<br>16<br>20 |
| <b>T</b><br>Temperaturkompensation                           | 11                                                       |
| <b>V</b><br>Verdrahtung                                      | 18                                                       |
| W<br>Werkseinstellungen<br>Menü Betrieb<br>Menü Installation | 65<br>65                                                 |
| <b>Z</b><br>Zielgruppe                                       | 5                                                        |





# 12. Notizen

| - |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |



#### A-96.250.610 / 030322

#### Swan-Produkte - Analytische Instrumente für:



Swan ist weltweit durch Tochtergesellschaften und Distributoren vertreten und kooperiert mit unabhängigen Vertriebspartnern auf der ganzen Welt. Für Kontaktangaben den QR-Code scannen.

# Swan Analytical Instruments · CH-8340 Hinwil www.swan.ch · swan@swan.ch

SWISS 🚹 MADE





AMI INSPECTOR Conductivity