

AMI INSPECTOR Resistivity

Versione 6.00 e superiore

Customer Support

SWAN and its representatives maintain a fully trained staff of technical specialists around the world. For any technical question, contact your nearest SWAN representative, or the manufacturer: SWAN ANALYTISCHE INSTRUMENTE AG Studbachstrasse 13 8340 Hinwil Switzerland Internet: www.swan.ch E-mail: support@swan.ch

Document Status

Title:	Manuale Operatore AMI INSPECTOR Resistivity		
ID:	A-96.250.784		
Revision	Issue		
00	Ottobre 2012	Prima edizione	
01	Febbraio 2015Aggiornare al firmware versione 5.30, scheda madre V 2.4		
02	Giugno 2016 AMI Inspector versione 2-A (con scheda madre AMIAKKU) e firmware versione 6.00		

© 2017, SWAN ANALYTISCHE INSTRUMENTE AG, Svizzera. tutti i diritti riservati.

Le informazioni contenute in questo documento sono soggette a variazioni senza preavviso.

Indice

1. 1.1. 1.2.	Istruzioni di sicurezza Avvertenze Normative generali di sicurezza	3 4 6
2. 2.1. 2.2. 2.3.	Descrizione del prodotto Descrizione del sistema Panoramica dello strumento Dati tecnici	7 7 9
3. 3.1. 3.2. 3.2.1 3.2.2 3.3. 3.3.1 3.3.2 3.4. 3.4.1 3.4.2 3.4.3 3.5.	Installazione11Checklist di installazione11Collegamento ingresso e uscita campione11Ingresso del campione11Uscita del campione11Cablaggio elettrico11Schema dei collegamenti11Alimentazione11Contatti relè11Ingresso11Allarme relè11Relè 1 e 211Uscita di segnale11	2 233345688899
4. 4.1. 4.2.	Impostazione dello strumento. 2 Regolazione del flusso campione. 2 Programmazione 2	0 0
5. 5.1. 5.2. 5.3. 5.4.	Funzionamento2Tasti2Display per il flusso di campioni singolo2Struttura del software2Modifica di parametri e valori2	2 2 3 4 5
6. 6.1. 6.2. 6.3.	Manutenzione2Tabella di manutenzione2Interruzione del funzionamento per manutenzione2Manutenzione del sensore2	6 6 7

6.3.1	Pulire il sensore	27
6.4.	Regolazione di precisione	29
6.5.	Sostituzione dei fusibili	30
6.6.	Sostituzione della batteria	31
6.7.	Interruzione prolungata del funzionamento	31
7.	Lista errori	32
8.	Panoramica del programma	35
8.1.	Messages (Menu principale 1)	35
8.2.	Diagnostics (Menu principale 2)	36
8.3.	Maintenance (Menu principale 3)	37
8.4.	Operation (Menu principale 4)	37
8.5.	Installation (Menu principale 5)	38
9.	Elenco dei programmi e spiegazioni	40
	1 Messages	40
	2 Diagnostics	40
	3 Maintenance	42
	4 Operation	43
	5 Installation	44
10.	Valori predefiniti	59
11.	Indice	62
12.	Notas	63

AMI INSPECTOR Resistivity -Manuale Operatore

Questo documento descrive i passaggi principali per la configurazione, l'utilizzo e la manutenzione dello strumento.

1. Istruzioni di sicurezza

Generalità	Le istruzioni contenute in questa sezione illustrano i potenziali ri- schi associati all'utilizzo dello strumento e importanti pratiche di curezza per minimizzare tali rischi.	
	Attenendosi scrupolosamente alle informazioni contenute in questa sezione, è possibile proteggersi da pericoli e creare un ambiente di lavoro più sicuro.	
	Ulteriori istruzioni di sicurezza vengono fornite anche nel resto del manuale, nei punti ritenuti più opportuni.	
	Osservare rigorosamente tutte le istruzioni di sicurezza presenti in questa pubblicazione.	
Destinatario	Operatore: persona qualificata che utilizza l'apparecchiatura per gli scopi appropriati.	
	L'utilizzo dello strumento richiede una conoscenza dettagliata delle applicazioni, delle funzioni dello strumento e del programma software, così come delle regole e delle normative relative alla si- curezza.	
Ubicazione del manuale ope- ratore	Conservare il Manuale Operatore AMI in prossimità dello strumen- to.	
Qualifica, Addestramen-	Per essere qualificati all'installazione e all'utilizzo dello strumento, è necessario:	
to	 leggere e comprendere le istruzioni contenute nel presente manuale e nelle schede di sicurezza (MSDS) conoscere le regole e le normative applicabili relative alla si- 	
	curezza	

1.1. Avvertenze

I simboli utilizzati per le note di sicurezza hanno il significato seguente:

PERICOLO

La tua vita o il benessere fisico sono in grave pericolo se tale avvisi vengono ignorati.

· Seguire attentamente le istruzioni di prevenzione

AVVERTENZA

Lesioni gravi o danni al apparecchiature si può verificare se tali avvisi sono ignorato.

• Seguire attentamente le istruzioni di prevenzione

ATTENZIONE

l danni alle attrezzature o gli strumenti possono essere la conseguenza, se tali segnalazioni sono ignorato.

· Seguire attentamente le istruzioni di prevenzione

L'importanza dei obbligatorio segni in questo manuale.

Obbligatorio segni

Occhiali protettivi

Guanti protettivi

AMI INSPECTOR Resistivity

Istruzioni di sicurezza

1.2. Normative generali di sicurezza

RequisitiL'utente è responsabile del corretto funzionamento del sistema. Ènormativinecessario osservare tutte le precauzioni per garantire il funziona-
mento in piena sicurezza dello strumento.

Ricambi e ma-
terialeUtilizzare soltanto i ricambi e i materiali di consumo originali SWAN.
Se si utilizzano altri componenti durante il normale periodo di ga-
ranzia, la garanzia del produttore non è valida.

Modifiche Modifiche e aggiornamenti dello strumento devono essere eseguiti esclusivamente da un tecnico autorizzato. SWAN declina ogni responsabilità per qualsiasi rivendicazione derivante da modifiche o alterazioni non autorizzate.

AVVERTENZA

Pericolo di shock elettrico

Se non è più possibile un funzionamento corretto, scollegare lo strumento da tutte le linee di alimentazione e adottare tutte le misure necessarie per prevenire un utilizzo accidentale.

- Per prevenire lo shock elettrico, assicurarsi che il cavo di messa a terra sia collegato
- Gli interventi di assistenza devono essere effettuati esclusivamente da personale autorizzato
- Quando sono necessari interventi sull'elettronica, scollegare l'alimentazione dello strumento e quella dei dispositivi collegati al
 - relè 1
 - relè 2
 - relè allarme

AVVERTENZA

Per un'installazione e un utilizzo sicuro dello strumento, leggere e comprendere le istruzioni contenute in questo manuale.

AVVERTENZA

Solo il personale addestrato e autorizzato SWAN potrà svolgere le operazioni descritte in questo documento.

2. Descrizione del prodotto

Questo capitolo contiene dati tecnici, requisiti e dati relativi alle prestazioni.

2.1. Descrizione del sistema

Lo strumento portatile AMI INSPECTOR è un sistema completo di monitoraggio sistema montato su un piccolo pannello con un supporto e una batteria ricaricabile per un funzionamento indipendente (>24 ore), progettato come dispositivo di ispezione per l'assicurazione di qualità di monitor di processo online.

Caratteristiche Di seguito vengono riportate le funzioni generiche di AMI INSPECTOR:

- Durata della batteria dopo una ricarica completa:
 - >24 ore a carico massimo (utilizzo di 3 relè, USB, uscita analogica e registratore)
 - >36 ore a carico minimo (utilizzo del registratore solo)
- Tempo di ricarica: circa 6 ore
- Arresto controllato in caso di batteria scarica
- Visualizzazione della durata rimanente della batteria espressa in ore
- Per prolungare la durata della batteria, la retroilluminazione del display LCD è stata disattivata
- Funzionamento continuo con l'uso di un adattatore di corrente. È necessario far scaricare la batteria almeno una volta al mese (uso normale finché il monitor si spegne automaticamente).
- **Batteria** La batteria agli ioni di litio si trova nell'alloggiamento del trasmettitore AMI. Consultare il capitolo Alimentazione, p. 16 relativamente all'alimentazione e alla ricarica della batteria.
- **Sensore** Swansensor RC-U alta precisione, elettrodo a due cavi in acciaio inox con sonda di temperatura integrata NTC.

Gamma di La resistività è un parametro per la quantità totale di ioni presenti applicazione nella soluzione. Essa può essere usata per controllare:

- le condizioni delle acque
- la purezza delle acque
- la durezza delle acque
- la completezza dell'analisi degli ioni

Caratteristiche di sicurezza	Nessuna perdita di dati in caso di interruzione dell'alimentazione, tutti i dati vengono salvati nella memoria non volatile. Protezione da sovratensione di ingressi e uscite. Separazione galvanica di ingressi di misurazione e uscite analogi- che.	
Interfaccia USB	Interfaccia USB integrata per logger scaricare. Utilizzare esclusiva- mente la chiavetta USB fornita da Swan (le altre chiavette USB possono ridurre drasticamente la durata della batteria).	
Uscita analogica	Una uscita analogica programmabile per i valori misurati (scalabile liberamente, lineare o bilineare) o uscita con controllo continuo (pa- rametri di controllo programmabili). Loop di corrente: 0/4–20 mA Carico max.: 510 Ω	
Relè	Due contatti a potenziale zero programmabili come finecorsa per valori di misura, controller o timer per la pulizia del sistema con fun- zione di attesa automatica. Carico massimo: 100 mA / 50 V	
Relè allarme	 Due contatti a potenziale zero. Alternativamente: Aperto durante il normale funzionamento, chiuso in caso di errore o interruzione dell'alimentazione Chiuso durante il normale funzionamento, aperto in caso di errore o interruzione dell'alimentazione Indicazione generale di allarme per valori di allarme programmabili e guasti dello strumento. 	
Ingresso	Per contatto a potenziale zero, al fine di «congelare» il valore di mi- sura o interrompere il controllo in installazioni automatizzate (fun- zione di attesa o stop remoto)	
Principio di misurazione	La resistività dell'acqua ad elevata purezza viene determinata con un sensore costituito da due elettrodi di metallo. Le caratteristiche di ciascun sensore sono espressi come costante della cella. Una tensione alternata (per minimizzare gli effetti di polarizzazione) vie- ne applicata a due elettrodi. A seconda della concentrazione di ioni nel campione, viene generato un segnale tra i due elettrodi, il quale è proporzionale alla resistività dell'acqua. Il risultato della misurazione è indicato come resistività.	

2.2. Panoramica dello strumento

- A Trasmettitore AMI
- **B** Swansensor RC-U
- **D** Flussometro ad alta temperatura
- E Uscita campione
- F Ingresso campione
- **C** Cella a deflusso QV-HFlow **G** Valvola di regolazione del flusso

SchemaLa cella a deflusso (QV-Hflow) consta di blocco di cella a deflussoidraulico[D], sensore di flusso [B] e di valvola di regolazione del flusso [E].Il sensore di conduttività RC-U [A] con un sensore di temperatura
integrato viene avvitato al blocco della cella a deflusso [D].Il campione entra dall'ingresso del campione [F]. Esso scorre trami-
te la valvola di regolazione del flusso [E], da cui è possibile regolare

te la valvola di regolazione del flusso [E], da cui e possibile regolare la portata. Il campione fluisce attraverso il blocco della cella a deflusso [D],

dove avviene la misurazione della conduttività del campione.

Il campione esce dal blocco della cella a deflusso tramite il flussometro, attraverso l'uscita del campione [C].

- **B** Sensore di flusso
- **C** Uscita di campione
- **D** Blocco della cella a deflusso
- E Valvola di regolazione del flusso
- **F** Ingresso del campione

SU2211 ANALYTICAL INSTRUMENTS

2.3. Dati tecnici

Alimentazione	Batteria Utilizzare esclusivamente l'adattatore di corrente originale fornito ir	
	dotazione.	
	Tensione:	85–265 VAC, 50/60 Hz
	Consumo energetico:	max. 20 VA
	Tempo di ricarica:	6h
	Tipo di batteria:	Li-lon
	Durante la ricarica, protec liquidi (non IP66).	ggere dalle fonti di calore e dagli spruzzi di
Tempo di	Autonomo (batteria):	> 24h
funzionamento	Collegato all'alimenta- tore:	continuato
	Arresto controllato in cas zione del tempo rimanen	o di esaurimento della batteria, visualizza- te.
Elettronica,	Alluminio con grado di pr	otezione IP 66 / NEMA 4X
alloggiamento	Temperatura ambiente: Umidità: Display: Dimensioni: Peso:	da -10 a +50 °C 10–90% rel., non condensante LCD retroilluminato, 75 x 45 mm 180×140×70 mm 1.5 kg
Condizioni campione	Portata: Temperatura: Pressione in ingresso: Pressione in uscita:	70–100 l/h fino a 95 °C fino a 2 bar senza pressione
Requisiti in sito	Il sito di installazione dell mento a:	'analizzatore deve consentire il collega-
	Ingresso campione: Uscita campione: Altitudine massima:	adattatore Swagelok tube 1/4" tubo flessibile da 6x8 mm 2000 m sopra il livello del mare
Intervallo di misura	Resistività: Risoluzione:	0.01–18.18 MΩ-cm 0.01 MΩ-cm

3. Installazione

3.1. Checklist di installazione

Controllo	 Le specifiche dello adattatore di corrente devono essere conformi ai valori nominali della corrente CA disponibile. Controllare che la batteria sia completamente carica. Vedere Adattatore di corrente esterno, p. 17.
Installazione	Collegare la condotta campione e la condotta di scarico
Messa in funzione	 Attivare il flusso campione Accendere lo strumento
Configurazione dello stru- mento	 Programmare tutti i parametri specifici del sensore (costante della cella, correzione temp. lunghezza cavo) Programmare tutti i parametri per i dispositivi esterni (interfaccia, registratori, ecc.) Programmare tutti i parametri necessari al funzionamento dello strumento (valore nominale e modalità USP, valori soglia, allarmi)
Periodo di rodaggio	 Lasciare in funzione lo strumento senza interruzioni per 1 ora

3.2. Collegamento ingresso e uscita campione

3.2.1 Ingresso del campione

Preparazione Tagliare il tubo alla lunghezza giusta e togliere le sbavature. Esso deve essere dritto e privo di bavature per circa 1,5 x diametro del tubo dall'estremità.

Lubrificare con olio, MoS2, teflon etc. per l'assemblaggio e rimontare pezzi di dimensioni superiori (filettatura, cono di compressione).

Installazione 1 Inserire il puntale di compressione [C] e il cono di compressione [D] nel dado di raccordo [B].

- 2 Avvitare il dado di raccordo sul corpo, ma non stringerlo.
- 3 Spingere il tubo in acciaio inox attraverso il dado di raccordo finché non raggiunge il punto di arresto del corpo.
- 4 Serrare il dado del raccordo di 1³/₄ di rotazione utilizzando una chiave ad estremità aperta. Bloccare dalla rotazione il corpo con una seconda chiave.

- A Tubo
- **B** Dado di raccordo
- C Puntale di compressione
- D Cono di compressione
- E Corpo
- **F** Collegamento serrato

3.2.2 Uscita del campione

FEP tubo flessibile 8 x 6 mm. Connettere il tubo al raccordo a gomito serto ed inserirlo nel drenaggio atmosferico con una capacità sufficiente.

- A Raccordo a gomito
- B Puntale di compressione
- C Dado zigrinato
- D Tubo flessibile

3.3. Cablaggio elettrico

AVVERTENZA

Ricordarsi sempre di spegnere l'alimentazione prima di toccare parti elettriche Accertarsi che le specifiche dell'adattatore a parete corrispondano a quelle del sito di installazione

Spessori dei cavi

- A Pressacavi PG 9: cavo Ø_{esterno} 4–8 mm
- **B** Pressacavi PG 7: cavo Ø_{esterno} 3–6,5 mm

Avviso: Proteggere i pressacavi inutilizzati

- Cavo
- Per alimentazione e relè: usare max. 1,5 mm² / AWG 14 cavo intrecciato con bussole terminali
- Per gli ingressi e le uscite di segnale: utilizzare un cavo intrecciato di max. 0,25 mm² / AWG 23 con guaine isolanti terminali

AVVERTENZA

Tensione esterna.

l dispositivi alimentati esternamente collegati al relè 1 o 2 o al relè di allarme possono causare scosse elettriche

- Accertarsi che i dispositivi collegati ai seguenti contatti siano scollegati dall'alimentazione, prima di riprendere l'installazione.
 - relè 1
 - relè 2
 - relè allarme

3.3.1 Schema dei collegamenti

ATTENZIONE

Utilizzare solo i morsetti illustrati in questo schema e solo per lo scopo indicato. L'utilizzo di qualsiasi altro morsetto causerà cortocircuiti con conseguenti danni a materiali e persone

3.3.2 Alimentazione

A differenza di tutti gli altri monitor di processo in linea Swan, il trasmettitore AMI INSPECTOR è alimentato solo tramite batteria. La batteria ricaricabile (Li-Ion) consente un'autonomia di almeno 24 ore.

Non alimentare direttamente il trasmettitore in quanto ciò danneggerà la scheda madre. Tutti i trasmettitori AMI INSPECTOR sono alimentati unicamente a batteria.

Ricarica

Per ricaricare AMI INSPECTOR, utilizzare esclusivamente l'adattatore di corrente originale fornito in dotazione. Tempo di ricarica: circa 6 ore.

Una carica completa garantisce un'autonomia di almeno 24 ore:

 >24 ore con carica completa (utilizzo di 3 relè, USB, uscita analogica e registratore)

>36 ore con carica minima (utilizzo del registratore solo) Una volta esaurita la batteria, il firmware provvederà ad effettuare un arresto automatico.

Per accendere/spegnere lo strumento, utilizzare il pulsante della batteria.

Per un funzionamento continuato, utilizzare l'alimentatore.

Funzionamento continuato

Accensione/

spegnimento

ATTENZIONE

 Se AMI si accende e poi si spegne immediatamente, la batteria è scarica. Non tenere l'interruttore a levetta in posizione ON, poiché tale operazione può danneggiare la batteria.

ATTENZIONE

- Durante la ricarica, proteggere dalle fonti di calore e dagli spruzzi di liquidi (la spina dell'alimentatore non è di grado IP66).
- Non alimentare dispositivi esterni, p. es. pompe, valvole magnetiche o qualsiasi altro dispositivo elettrico con AMI INSPECTOR.

ATTENZIONE

 Per ricaricare AMI INSPECTOR, utilizzare esclusivamente l'adattatore di corrente originale fornito in dotazione. L'utilizzo di altri adattori di corrente può danneggiare la batteria o causare malfunzionamento

AMI INSPECTOR Resistivity

Installazione

Adattatore di corrente esterno

- Intervallo ingresso universale 85–265 V CA.
- Protezione continua dai cortocircuiti.
- Protezione dalle sovratensioni.
- Indicatore a LED per lo stato acceso
- Ingresso CA a 2 spine (IEC 320-C8) per il cavo di alimentazione staccabile specifico del Paese

Sono inclusi nella fornitura due diversi cavi di alimentazione:

alimentazione

Cavi di

- Cavo di alimentazione con spina di tipo C (Europlug)
- Cavo di alimentazione con spina di tipo A (NEMA-1)

Se è necessario un tipo di spina diverso, acquistare un cavo di alimentazione adatto da un rivenditore locale.

Dimensioni:

3.4. Contatti relè

3.4.1 Ingresso

Avviso: Utilizzare soltanto contatti a potenziale zero (a secco).

Morsetti 13 / 14

Se l'uscita analogica viene congelata, la misura si interrompe quando l'ingresso risulta attivo.

Per la programmazione, vedere ingresso, 5.3.4, p. 66.

3.4.2 Allarme relè

Avviso: Soltanto per carichi resistivi; non utilizzare con carichi capacitivi o induttivi. Carico max. 1 A/250 V CA

Uscita allarme per errori di sistema.

Per i codici di errore vedere Elenco errori, p. 42.

Per la programmazione, vedere allarme relè, 5.3.1, p. 59.

Avviso: Con alcuni allarmi e alcune impostazioni sul trasmettitore AMI il relè non cambia stato. L'errore è comunque segnalato a display.

	Morsetti	Descrizione	Relay connection
NC ¹⁾ Normal- mente chiusi	5/4	Attivo (aperto) durante il nor- male funzionamento. Inattivo (chiuso) in caso di errore o interruzione dell'ali- mentazione.	
NO Normal- mente aperti	5/3	Attivo (chiuso) durante il nor- male funzionamento. Inattivo (aperto) in caso di errore o interruzione dell'ali- mentazione.	

1) utilizzo standard

3.4.3 Relè 1 e 2

Avviso: soltanto per carichi resistivi; non utilizzare con carichi capacitivi o induttivi. Carico max. 100 mA/50 V.

Per la programmazione vedere 5.3.2 e 5.3.3, p. 61.

	Morsetti	Descrizione	Relay connection
NO Normal-	6/7: Relè 1 8/9: Relè 2	Inattivo (aperto) durante il normale funzionamento e interruzione dell'ali-	•
mente aperto		mentazione. Attivo (chiuso) quando avviene un evento programmato	-M

3.5. Uscita di segnale

L' uscita del segnale è collegata alla scheda USB.

Avviso: Carico max. 510 Ω

Morsetti 16 (+) e 15 (-) Per la programmazione vedere 5.2 Signal Outputs, p. 54.

A Uscita di segnale da 0/4–20 mA PCB B Interfaccia USB PCB

4. Impostazione dello strumento

4.1. Regolazione del flusso campione

- 1 Aprire la valvola di regolazione del flusso.
- 2 Attendere che la cella a deflusso sia completamente piena.
- 3 Accendere l'alimentazione.

Avviso: Per consentire una misurazione precisa in un intervallo compreso tra 18 e 18.18 $M\Omega$, impostare il flusso campione a 70–100 l/h.

4.2. Programmazione

Impostare tutti i parametri necessari nel menu 5 <Installation>, per ulteriori informazioni sui parametri del sensore, vedere 5.1 Sensors, p. 60

- Misurazione di flusso
- Modo di misurazione
- Modo operativo USP
- Parametri del sensore
- · Compensazione della temperatura
- Programmare tutti i parametri per i dispositivi esterni (interfaccia, registratori, ecc.). Programmare tutti i parametri per il funzionamento dello strumento (limiti, allarmi). Per spiegazioni, fare riferimento a Panoramica del programma, p. 35 e a Elenco dei programmi e spiegazioni, p. 40.

Misurazione Menu 5.1.1 del flusso Selezionare il sensore di flusso Q-HFlow Modo di Menu 5.1.2

misurazione Selezionare Resistivity.

Impostazione dello strumento

ModoMenu 5.1.3operativo USPII modo operativo USP implementato nel firmware del trasmettitore
AMI INSPECTOR Resistivity consente la misurazione di acqua far-
maceutica secondo lo USP <645>.
Se il modo operativo USP è impostato su <off> viene eseguita la
misurazione di conduttività o resistività standard.
Se il modo operativo USP è impostato su <on>, i valori di misura-
zione non compensati vengono confrontati con i valori di una tabel-
la implementata definita da USP. Se la deviazione è troppo elevata,
viene generato il codice di errore 15 (errore USP).

Menu 5.1.4:

Parametri del sensore

Inserire i seguenti parametri stampata sull'etichetta del sensore.

- Costante della cella ZK
- · Correzione della temperatura DT
- lunghezza cavo del sensore. Se la lunghezza del cavo del sensore è di 0,3 m, impostare la lunghezza del cavo a 0 m

Compensazione temperatura Menu 5.1.5

Scegliere tra

- nessuna
- coefficiente
- sali neutri
- acqua ad elevata purezza
- acidi forti
- basi forti
- ammoniaca, etanolammina
- morfolina

5. Funzionamento

5.1. Tasti

A per uscire da un menu o da un comando (annullando qualsiasi modifica) per ritornare al livello menu precedente

B per spostarsi IN BASSO in un menu a tendina e per diminuire i valori

C per spostarsi IN ALTO in un menu a tendina e per aumentare i valori

per scorrere i valori misurazione se è collegato un sequenziatore di campioni

D per aprire un sottomenu selezionato per accettare un dato immesso

5.2. Display per il flusso di campioni singolo

Display dei valori misurati

5.3. Struttura del software

Main Menu	
Messages	•
Diagnostics	•
Maintenance	
Operation	
Installation	

•

Diagnostics	2.1
Identification	•
Sensors	•
Sample	•
I/O State	•
Interface	►

Maintenance	3.1
Simulation Set Time 23.09.06 16:30 Transmitter checkoff	► 0:00
Fine adjust	•

Operation	4.1
Sensors	•
Relay Contacts	•
Logger	•

Installation	5.1
Sensors	
Signal Outputs	
Relay Contacts	•
Miscellaneous	•
Interface	►

Menu 1: Messaggi

evidenzia errori ancora irrisolti, oltre a una cronologia degli eventi (ora e stato degli eventi che si sono verificati in un momento precedente) e le richieste di manutenzione. Contiene dati specifici per l'utente.

Menu 2: Diagnostica

Fornisce all'utente dati importanti relativi allo strumento e al campione.

Menu 3: Manutenzione

Per la calibrazione dello strumento, l'assistenza, la simulazione dei relè e delle uscite analogiche e per l'impostazione dell'ora. Viene utilizzato dal personale dell'assistenza tecnica.

Menu 4: Funzionamento

Sottogruppo del menu 5 - **Installazione**, ma riferito al processo. Parametri specifici per l'utente che potrebbero dover essere modificati durante la routine giornaliera. Di solito è protetto da password e viene usato dall'operatore di processo.

Menu 5: Installazione

Per la configurazione iniziale dei valori da parte del personale autorizzato SWAN, al fine di definire tutti i parametri dello strumento. Può essere protetto da password.

5.4. Modifica di parametri e valori

Modifica dei parametri

lei parametri	Logger 4.4.1 Log interval 30 min Clear logger no	1 2	Evidenziare la voce di menu che indica il parametro da modificare. Premere [Enter]
	Logger 413 Log inten Interval. 1 Clear log 5 min 10 min 30 min 1 Hour	3 4	Premere [] o[] per evi- denziare il parametro desiderato. Premere [Enter] per confermare la selezione o [Exit] per mantenere il parametro precedente.
	Logger 4.1.3 Log interval 1 Hour Clear logger no	5	<i>⇒ll parametro selezionato è indicato (ma non ancora salvato).</i> Premere [Exit].
	Logger 4.1.3 Log inte Save ? Clear lov Yes no	6	<i>⇒Si</i> è selezionato. Premere [Enter] per salvare il nuo- vo parametro. <i>⇒II sistema si riavvia, il nuovo</i> <i>parametro è impostato.</i>
Modifica del valore	Alarm5.3.1.1Alarm High12.00 pHAlarm Low-3.00 pHHysteresis0.10 pHDelay5 Sec	1 2 3	Selezionare il parametro . Premere [Enter]. Premere [] o [] per im- postare il valore desiderato.
	Alarm 53111 Alarm High 9.00 pH Alarm Low 5.00 pH Hysteresis 0.10 pH Delay 5 Sec	4 5 6	Premere [Enter] tper confermare il nuovo valore. Premere [Exit]. <i>⇒Si è selezionato.</i> Premere [Enter] per salvare il nuo- vo valore.

L'esempio seguente mostra come modificare l'intervallo di logger:

6. Manutenzione

6.1. Tabella di manutenzione

Se necessario	Pulire il sensore
In conformità alle norme USP	Eseguire un controllo del trasmettitore

6.2. Interruzione del funzionamento per manutenzione

- 1 Interrompere l'alimentazione dello strumento.
- 2 Chiudere la valvola di regolazione del flusso [C] per fermare il flusso campione.

6.3. Manutenzione del sensore

6.3.1 Pulire il sensore

Swansensor RC-U è ampiamente esente da manutenzione. Tuttavia, in base all'applicazione esso potrebbe essere contaminato, causando problemi.

Avviso: Sensore con cavo fisso installato

 Per evitare danni al cavo del sensore dovuti alla torsione in fase di svitamento del sensore dalla cella a deflusso, scollegare il cavo dai terminali nel trasmettitore AMI

Per rimuovere il sensore dalla cella a deflusso procedere nel modo seguente:

Rimuovere 1 Aprire l'alloggiamento del trasmettitore.

- il sensore 2 Scollegare il cavo del sensore dai morsetti.
 - **3** Rimuovere il cavo del sensore dall'alloggiamento del trasmettitore.
 - 4 Svitare e rimuovere il sensore [A] dal blocco della cella a deflusso [B], utilizzare una chiave inglese.
 - 5 Rimuovere il nastro di teflon dalla filettatura del sensore.
 - 6 Pulire il sensore con acqua e sapone.
 - 7 Risciacquare il sensore bene con acqua ad elevata purezza.

- A Sensore
- B Cella a deflusso
- C Valvola di regolazione del flusso

- Installare il Per installare il sensore RC-U nella cella a deflusso procedere nel sensore modo seguente:
 - 1 Avvolgere 7 giri di nastro di teflon intorno alla filettatura del sensore.
 - 2 Avvitare il sensore alla cella a deflusso e serrare bene.
 - 3 Inserire il cavo del sensore nell'alloggiamento del trasmettitore.
 - 4 Collegare il cavo del sensore ai terminali del trasmettitore AMI, vedere Cablaggio elettrico, p. 14.
 - 5 Chiudere l'alloggiamento del trasmettitore.
 - 6 Aprire la valvola di regolazione del flusso [C].
 - 7 Accendere l'alimentazione.

- A Nastro in teflon
- B Filettatura sensore
- **C** Cella a deflusso

6.4. Regolazione di precisione

La funzione «Fine Adjust» è solo disponibile se AMI INSPECTOR Resistivity è impostato nella modalità di misurazione della resistività.

La funzione «Fine Adjust» è usata per compensare un possibile scostamento dei componenti elettronici. Esso viene effettuato automaticamente ogni notte alle ore 00:30.

Si può inoltre avviare la funzione «Fine Adjust» manualmente dal menu <Maintenance/Fine adjust>.

6.5. Sostituzione dei fusibili

AVVERTENZA

Tensione esterna.

l dispositivi alimentati esternamente collegati al relè 1 o 2 o al relè di allarme possono causare scosse elettriche.

- Accertarsi che i dispositivi collegati ai seguenti contatti siano scollegati dall'alimentazione, prima di riprendere l'installazione.
 - relè 1
 - relè 2
 - relè allarme

Se un fusibile è bruciato, scoprire la causa e risolverla prima di sostituirlo con uno nuovo. Utilizzare pinzette o pinze a becchi per rimuovere il fusibile guasto.

Utilizzare solo i fusibili originali forniti da SWAN.

A 1.25 AF/250V Alimentazione strumento

6.6. Sostituzione della batteria

- A Batteria
- B Spina batteria
- C Cavo a nastro

- 1 Spegnere AMI Inspector
- 2 Se collegato, scollegare l'adattatore di corrente dalla presa
- 3 Aprire l'alloggiamento del trasmettitore
- 4 Estrarre il cavo a nastro [C] dalla scheda madre
- 5 Scollegare la spina della batteria [B] e sostituire la batteria

6.7. Interruzione prolungata del funzionamento

- 1 Interrompere il flusso campione.
- 2 Interrompere l'alimentazione dello strumento.
- 3 Svitare e rimuovere il sensore.
- 4 Svuotare e asciugare la cella a deflusso.
- 5 Reinstallata il sensore.

7. Lista errori

Errore 📢

Errore non irreversibile. Attiva un allarme se un valore programmato viene superato.

Tali errori vengono contrassegnati con **E0xx** (in grassetto e nero). **Errore irreversibile** (simbolo lampeggiante)

Il controllo dei dispositivi di dosaggio viene interrotto. I valori misurati indicati potrebbero essere errati.

Gli errori irreversibili si dividono nelle due categorie seguenti:

- Errori che scompaiono se vengono ripristinate le corrette condizioni di misurazione (p. es. Flusso campione basso). Tali errori vengono contrassegnati con E0xx (grassetto e arancione)
- Errori che indicano un guasto hardware dello strumento.
 Tali errori vengono contrassegnati con E0xx (grassetto e rosso)

Selezionare menu <Messages>/ <Pending Errors>.

Premere [ENTER] per confermare l' Errore. L'errore viene resettato e salvato nella Message List.

Errore	Descrizione	Misure correttive
E001	Alarm high	controllare il processocontr. valore progr. su 5.3.1.1.1, S. 63
E002	Alarm low	 controllare il processo contr. valore progr. su 5.3.1.1.26, S. 63
E007	Sample Temp. high	 controllare il processo contr. valore progr. su 5.3.1.3, S. 64
E008	Sample Temp. low	 controllare il processo contr. valore progr. su 5.3.1.3, S. 64
E009	Sample Flow high	regolare il flusso del campionecontr. valore progr. su 5.3.1.2, S. 64
E010	Sample Flow low	 ipristinare il flusso del campione strumento pulito contr. valore progr. su 5.3.1.2, S. 64
E011	Temp. shorted	 controllare il cablaggio del sensore temperatura controllare del sensore temperatura
E012	Temp. disconnected	 controllare il cablaggio del sensore temperatura controllare del sensore temperatura
E013	Case Temp. high	 verificare caso / temperatura ambiente contr. valore progr. su 5.3.1.4, S. 64
E014	Case Temp. low	 verificare caso / temperatura ambiente contr. valore progr. su 5.3.1.5, S. 64
E015	USP Error	 – controllare il processo
E017	Control Timeout	 check control device or programming in Installation, Relay contact, Relay 1/2 see 5.3.2/3, S. 65

Lista errori

Errore	Descrizione	Misure correttive
E019	Sensor shorted	 controllare il cablaggio del sensore controllare del sensore
E020	Sensor interrupted	 controllare il cablaggio del sensore controllare del sensore
E024	Input active	 Informa che il contatto Ingresso è attivo (controllare la programmazione in Installazione/Ingresso/Errore "si") 5.3.4, S. 67
E026	IC LM75	 Contattare l'assistenza
E030	EEProm Frontend	 Contattare l'assistenza
E031	Calibration Recout	 Contattare l'assistenza
E032	Wrong Frontend	 Contattare l'assistenza
E033	Power-on	 Nessuna: è solo un avviso di stato
E034	Power-down	– Nessuna: è solo un avviso di stato

8. Panoramica del programma

Per spiegazioni riguardanti ciascun parametro dei menu, vedere Elenco dei programmi e spiegazioni, p. 40.

- Il menu 1 Messages informa in merito a errori e interventi di manutenzione in corso e mostra lo storico degli errori. E possibile una protezione tramite password. Non e possibile modificare alcuna impostazione.
- Il menu 2 Diagnostics è sempre accessibile per tutti gli utenti. Non è prevista alcuna protezione tramite password. Non è possibile modificare alcuna impostazione
- Il menu 3 Maintenance è riservato all'assistenza: calibrazione, simulazione delle uscite e impostazione di ora/data. Proteggere con una password
- Il menu 4 **Operation** è rivolto all'utente e consente di impostare i valori soglia, i valori di allarme, ecc. La preimpostazione avviene tramite il menu Installation (solo per il tecnico di sistema). Proteggere con una password
- Il menu 5 Installation definisce l'assegnazione di tutti gli ingressi e le uscite, parametri di misurazione, interfaccia, password, ecc. Menu per tecnici di sistema. Si consiglia vivamente di impostare una password

8.1. Messages (Menu principale 1)

Pending Errors	Pending Errors	1.1.5*	* Numeri di menu
1.1*			
Message List	Number	1.2.1*	
1.2*	Date, Time		

Panoramica del programma

8.2. Diagnostics (Menu principale 2)

Identification	Desig.	AMI Rescon		* Numeri dei menu
2.1*	Version	V6.00-12/15		
	Factory Test	Instrument	2.1.3.1*	
	2.1.3*	Motherboard		
		Front End		
	Operating Time	Years / Days / Hou	ırs / Minutes / Seconds	2.1.4.1*
	2.1.4*			
Sensors	Cond. Sensor	Current Value MO	hm	
2.2*	2.2.1*	(Raw value) MOhn	п	
		Cell Constant		
		Cal. History	Number	2.2.1.5.1*
		2.2.1.5*	Date, Time	
			RSIo (KOhm)	
	Miscellaneous	Case Temp.	2.2.2.1*	
	2.2.2*			
Sample	Sample ID	2.3.1*		
2.3*	Temperature °C			
	Nt5K Ohm			
I/O State	Alarm Relay	2.4.1*		
2.4*	Relay 1/2	2.4.2*		
	Input			
	Signal Output 3			
Interface	Protocol	2.5.1*		
2.5*	USB Stick			

STU2

8.3. Maintenance (Menu principale 3)

Simulation	Alarm Relay	3.1.1*	* Numeri dei menu
3.1*	Relay 1	3.1.2*	
	Relay 2	3.1.3*	
	Signal Output 3	3.1.4*	
Set Time	(Date), (Time)		
3.2*			
Transmitter check	[
3.3*			
Fine adjust	Current Value	3.5.1*	
3.5*	RSIo		

8.4. Operation (Menu principale 4)

Sensors	Filter Time Const.	4.1.1*		
4.1*	Hold after Cal.	4.1.2*		
Relay Contacts	Alarm Relay	Alarm	Alarm High	4.2.1.1.1*
4.2*	4.2.1*	4.2.1.1*	Alarm Low	4.2.1.1.22*
			Hysteresis	4.2.1.1.32*
			Delay	4.2.1.1.44*
	Relay 1/2	Setpoint	4.2.x.100*	
	4.2.2* - 4.2.3*	Hysteresis	4.2.x.200*	
		Delay	4.2.x.30*	
	Input	Active	4.2.4.1*	
	4.2.4*	Signal Outputs	4.2.4.2*	
		Output / Control	4.2.4.3*	
		Fault	4.2.4.4*	
		Delay	4.2.4.5*	
Logger	Log Interval	4.3.1*		
4.3*	Clear Logger	4.3.2*		* Numeri dei menu

8.5. Installation (Menu principale 5)

Sensors	Flow			* Numeri dei menu
5.1*	5.1.1*			
	Meas. Mode			
	5.1.2*			
	USP Operating Mode			
	5.1.3			
	Sensor Parameters	Cell Constant		
	5.1.4	Temp. Corr.		
		Cable length		
	Temp. Compendation 5.1.5*	Comp.	5.1.5.1	
Signal Outputs	Signal Output 3	Parameter	5.2.1.1*	
5.2*	5.2.1*	Current Loop	5.2.1.2*	
		Function	5.2.1.3*	
		Scaling	Range Low	5.2.x.40.10*
		5.2.x.40	Range High	5.2.x.40.20*
Relay Contacts	Alarm Relay	Alarm	Alarm High	5.3.1.1.1*
5.3*	5.3.1*	5.3.1.1*	Alarm Low	5.3.1.1.22
			Hysteresis	5.3.1.1.32
			Delay	5.3.1.1.42
		Sample Flow	Flow Alarm	5.3.1.2.1
		5.3.1.2*	Alarm High	5.3.1.2.2*
			Alarm Low	5.3.1.2.32*
		Sample Temp.	Alarm High	5.3.1.3.1*
		5.3.1.3*	Alarm Low	5.3.1.3.22*
		Case Temp. high	5.3.1.4*	
		Case Temp. low	5.3.1.5*	
	Relay 1/2	Function	5.3.2.1-5.3.3.1*	
	5.3.2* - 5.3.3*	Parameter	5.3.2.20-5.3.3.20*	
		Setpoint	5.3.2.300-5.3.3.300*	
		Hysteresis	5.3.2.400-5.3.3.400*	
		Delay	5.3.2.50-5.3.3.50*	

AMI INSPECTOR Resistivity

Panoramica del programma

SUAN
ANALYTICAL INSTRUMENTS

	Input	Active	5.3.4.1*
	5.3.4*	Signal Outputs	5.3.4.2*
		Output/Control	5.3.4.3*
		Fault	5.3.4.4*
		Delay	5.3.4.5*
Miscellaneous	Language	5.4.1*	
5.4*	Set defaults	5.4.2*	
	Load Firmware	5.4.3*	
	Password	Messages	5.4.4.1*
	5.4.4*	Maintenance	5.4.4.2*
		Operation	5.4.4.3*
		Installation	5.4.4.4*
	Sample ID	5.4.5*	
Interface	Protocol	5.5.1*	
5.5*	USB Stick		

* Numeri dei menu

1 Messages

1.1 Pending Errors

1.1.5 Fornisce un elenco di errori attivi e il loro stato (attivo, riconosciuto). Se un errore attivo viene riconosciuto, il relè d'allarme si apre. Gli errori risolti vengono spostati nell'Elenco dei messaggi.

1.2 Message List

1.2.1 Mostra lo storico degli errori: il codice dell'errore, l'ora e la data in cui si è verificato e lo stato (attivo, confermato, cancellato). Vengono salvati 65 errori. Dopodiché, viene eliminato l'errore più datato, in modo da salvare il più recente (buffer circolare).

2 Diagnostics

In modalità Diagnostics, è possibile solo visualizzare i valori, ma non modificarli.

2.1 Identification

Desig.: denominazione dello strumento. **Version:** firmware dello strumento (per es. V6.00-12/15)

- 2.1.3 Factory Test: data di controllo dello strumento e della scheda madre.
- **2.1.4 Operating Time:** mostra il tempo di funzionamento in anni, giorni, ore, minuti e secondi.

2.2 Sensors

2.2.1 Cond.Sensor:

- o Current Value: mostra il valore di misura effettivo in $M\Omega$ o μ S
- o Raw value: mostra il valore di misura effettivo in M Ω o μ S
- o Cell Constant: mostra la costante di cella

- 2.2.1.5 **Cal. History:** attivo solo, se la resistività è stata programmata nel menu 5.1.2. < Installation. Sensors. Meas. Mode>. Consultare i valori della diagnostica dell'ultima regolazione di precisione.
 - o Number o Date. Time: o RSIO. vengono salvati max. 64 record di dati.
 - 2.2.2 Miscellaneous:
- 2.2.2.1 Case Temp: mostra l'attuale temperatura in °C all'interno del trasmettitore

2.3 Sample

2.3.301 Sample ID: Mostra l'identificazione assegnata al campione. Questa identificazione è definita dall'utente per identificare l'ubicazione del campione Temperature: mostra la temperatura in °C. (Nt5K): mostra il valore grezzo della temperatura in Ω .

2.4 I/O State

Mostra lo stato effettivo di tutti gli ingressi e di tutte le uscite.

2.4.1	Alarm Relay:	attivo o inattivo
	Relay 1 e 2:	attivo o inattivo
	Input:	aperto o chiuso
	Signal Output 3:	corrente effettiva in mA

2.5 Interface

Protocol USB Stick

3 Maintenance

3.1 Simulation

Per simulare un valore o uno stato relè, selezionare

- relè di allarme
- relè 1 o 2
- uscita segnale 3 (le uscite analogiche 1 e 2 sono disattivate)

con il tasto [____] o [____].

Premere il tasto [Enter].

Cambiare il valore o lo stato dell'oggetto selezionato con il tasto [___] o [___].

Premere il tasto [Enter].

 \Rightarrow Il valore è simulato dal relè/uscita segnale

3.4.1	Alarm Relay:	attivo o inattivo
3.4.2	Relay 1:	attivo o inattivo
3.4.3	Relav 2	attivo o inattivo

3.4.3 Relay 2 3.4.4 Signal Output 3

Signal Output 3: Actual current in mA

Se non viene premuto alcun tasto, lo strumento torna in modalità normale dopo 20 minuti. Uscendo dal menu, tutti i valori simulati verranno ripristinati.

3.2 Set Time

Impostare la data e l'ora.

3.3 Transmitter check

Il controllo del trasmettitore non è applicabile a AMI INSPECTOR Resistivity.

3.5 Fine adjust

La funzione «Fine Adjust» (regolazione di precisione) è solo disponibile se AMI INSPECTOR Resistivity è impostato nella modalità di misurazione della resistività.

La funzione «Fine Adjust» è usata per compensare un possibile scostamento dei componenti elettronici. Essa viene effettuta automaticamente ogni notte alle ore 00:30.

Si può inoltre avviare la funzione «Fine Adjust» manualmente dal menu <Maintenance/Fine adjust>.

4 Operation

4.1 Sensori

- 4.1.1 Filter Time Constant: usata per smorzare i segnali di interferenza. Maggiore è la costante di tempo, più lentamente il sistema reagisce ai cambiamenti del valore misurato. Intervallo: 5–300 s
- 4.1.2 Hold after Cal: ritardo che consente allo strumento di stabilizzarsi nuovamente dopo la calibrazione. Durante la calibrazione, più il tempo d'attesa, le uscite analogiche sono congelate (sull'ultimo valore valido), i valori di allarme e i limiti non sono attivi. Intervallo: 0–6000 s

4.2 Relay Contacts

Vedere Relay Contacts, p. 29

4.3 Logger

Lo strumento è dotato di un logger interno. I dati possono essere copiati su un PC con una USB stick.

l record comprendono: data, ora, allarmi, valore misurato, valore grezzo (M Ω), temperatura interna, flusso.

4.3.1 Log Interval: selezionare un intervallo di log opportuno. Consultare la tabella riportata in basso per stimare l'intervallo di tempo max. di salvataggio dati mediante logger. Quando la memoria buffer del logger è piena, i dati memorizzati più datati vengono cancellati per fare spazio ai più recenti (buffer circolare). Intervallo: da 1 secondo a 1 ora

Intervallo	1 s	5 s	1 min	5 min	10 min	30 min	1 h
Тетро	25 min	2 h	25 h	5 gg	10 gg	31 gg	62 gg

- 4.3.2 *Clear Logger:* se si conferma con **sì**, tutti i dati del logger vengono eliminati. Viene avviata una nuova serie di dati.
- 4.3.3 Eject USB Stick: Premere [ENTER] per copiare tutti i data logger per la USB Stick.

Flow:

5 Installation

5.1 Sensors

5.1.1

Selezionare il tipo di sensore Q-Hflow:

Selezione della cella di flusso adatto.

Flow cell type
B-Flow
Q-Flow or QV-Flow
Q-Hflow or QV-Hflow

- **5.1.2 Meas. Mode:** sono disponibili le due modalità di misurazione Conduttività e Resistività.
- **5.1.3 USP Operating Mode:** accendere o spegnere la modalità operativa USP.

5.1.4 Sensor parameters:

- 5.1.4.1 *Cell Constant:* inserire la costante della cella ZK stampata sull'etichetta del sensore (vedere Parametri del sensore, p. 34).
- 5.1.4.2 *Temp. Corr:* inserire la correzione della temperatura DT stampata sull'etichetta del sensore (vedere Parametri del sensore, p. 34).
- 5.1.4.3 *Cable length:* Inserire la lunghezza del cavo del sensore.

5.1.5 Temp. Compensation: scegliere tra

- nessuna
- coefficiente
- sali neutri
- acqua ad elevata purezza
- acidi forti
- basi forti
- ammoniaca, etanolammina
- morfolina

5.2 Signal Outputs

- 5.2.1 Signal Output 3 (le uscite analogiche 1 e 2 sono disattivate)
- 5.2.1.1 *Parameter:* assegnare uno dei valori di processo all'uscita di segnale. Valori disponibili:

Resistivity	Conductivity
Meas. Value	Meas. Value
Temperature	Temperature
Sample Flow	Sample Flow
Meas. uc	Meas. uc

5.2.1.2 *Current Loop:* selezionare l'intervallo di corrente dell'uscita analogica. Assicurarsi che il dispositivo collegato funzioni con lo stesso intervallo di corrente.

Intervalli disponibili: 0-20 mA o 4-20 mA

- 5.2.1.3 *Function:* consente di stabilire se l'uscita analogica viene utilizzata per trasmettere un valore di processo o per comandare un'unità di controllo. Le funzioni disponibili sono:
 - lineare, bilineare o logaritmica per valori di processo.
 Vedere Come valori di processo, p. 45
 - Per i controller è disponibile il controllo verso l'alto o il controllo verso il basso.
 Vedere Come uscita di controllo, p. 47

Come valori di processo

Il valore di processo può essere rappresentato in 3 modi: lineare, bilineare o logaritmico. Vedere i grafici in basso.

AMI INSPECTOR Resistivity

Elenco dei programmi e spiegazioni

- X Valore misurato (logaritmico)
- **5.2.1.40** Scaling: inserire il punto iniziale e finale (intervallo alto o basso) della scala lineare o logaritmica. Inoltre, inserire il punto medio per la scala bilineare.

Se Parameter = Meas. Value

- 5.2.1.40.10 Intervallo basso: $0.00-200 \text{ M}\Omega \text{ or } 0.000-2000 \ \mu\text{S}$
- 5.2.1.40.20 Range high: 0.00–200 M Ω or 0.000–2000 μS

Se Parameter = Temperature

- 5.2.1.40.11 Intervallo basso: -30.0 to 130 °C
- 5.2.1.40.21 Intervallo alto: -30.0 to 1 130 °C

Se Parameter = Sample flow

- 5.2.1.40.12 Intervallo basso: 0-200 l/h
- 5.2.1.40.22 Intervallo alto: 0-200 l/h

Se Parameter = Meas. uc

- 5.2.1.40.13 Intervallo basso: 0.00–200 M Ω or 0.000–2000 μ S
- 5.2.1.40.23 Intervallo alto: 0.00–200 M Ω or 0.000–2000 μ S

Come uscita di controllo

Le uscite analogiche possono essere utilizzate per comandare le unità di controllo. Si distinguono diversi tipi di controllo:

- P-controller: l'azione del controller è proporzionale alla deviazione dal valore nominale. Il controller è caratterizzato dalla banda prop. In stato permanente, il valore nominale non verrà mai raggiunto. La deviazione è chiamata errore di stato permanente. Parametri: valore nominale, banda P
- PI-controller: la combinazione di un controller P con un controller I ridurrà al minimo l'errore stato permanente. Se il tempo di reset è impostato a zero, il controller I viene spento. Parametri: valore nominale, banda P, tempo di reset
- PD-controller: la combinazione di un controller P con un controller D ridurrà al minimo il tempo di risposta a un cambiamento rapido del valore di processo. Se il tempo derivativo viene impostato a zero, il controller D viene spento. Parametri: valore nominale, banda P, tempo derivativo
- PID-controller: la combinazione di un controller P, I e D consente un controllo adeguato del processo. Parametri: valore nominale, banda P, tempo di ripristino, tempo derivativo

Metodo Ziegler-Nichols per l'ottimizzazione di un controller PID: **Parameters:** valore nominale, banda P, tempo di ripristino, tempo derivativo

Il punto d'intersezione della tangente con il rispettivo asse dà come risultato i parametri a ed L.

					• •	
LIODOO	401	programmi	\sim	001000	271001	
		O(O)	-	SUPUE	4/10111	
	au	DIGGIGINI	~	Opioa	4 2 1011	
		1 0				

	Consultare il manuale dell'unità di controllo per dettagli relativi a collegamento e programmazione. Scegliere tra il controllo verso l'alto o verso il basso. Se il controllo verso l'alto o il controllo verso il basso è attivo.
5.2.1.43	Parametri di controllo. <i>Setpoint:</i> valore di processo definito dall'utente (valore o flusso mi- surato)
	<i>P-Band:</i> intervallo al di sotto (controllo verso l'alto) o al di sopra (controllo verso il basso) del valore nominale, dove l'intensità del dosaggio viene ridotta dal 100% allo 0% per eguagliare il valore nominale senza sovrastimolazione.
5.2.1.43	Control Parameters: se Parameter = Meas. value
5.2.1.43.10	Setpoint: 0.00–200 MΩ or 0.000–2000 μS
5.2.1.43.20	<i>P-Band</i> : 0.00–200 MΩ or 0.000–2000 μSI
5.2.1.43	Control Parameters: se Parameter = Temperature
5.2.1.43.11	Setpoint: -30 to +130 °C
5.2.1.43.21	<i>P-Band</i> : 0 to +100 °C
5.2.1.43	Control Parameters: se Parameter = Sample Flow
5.2.1.43.12	Setpoint: 0–200 I/h
5.2.1.43.22	<i>P-Band</i> : 0–200 l/h
5.2.1.43	Control Parameters: se Parameter = Meas. uc
5.2.1.43.13	<i>Setpoint</i> : 0.00–200 MΩ or 0.000–2000 μS
5.2.1.43.23	<i>P-Band</i> : 0.00–200 MΩ or 0.000–2000 μS
5.2.1.43.3	<i>Reset Time:</i> Il tempo di reset indica il tempo fino a che la risposta al gradino di un singolo controller I raggiunge lo stesso valore imme- diatamente raggiunto da un controller P. Intervallo: 0–9000 s
5.2.1.43.4	<i>Derivative Time:</i> il tempo derivativo è il tempo fino al quale la rispo- sta alla rampa di un singolo controller P raggiunge lo stesso valore immediatamente raggiunto da un controller D. Intervallo: 0–9000 s
5.2.1.43.5	<i>Control timeout:</i> se l'azione del controller (intensità di dosaggio) è costantemente superiore al 90% durante un periodo di tempo definito e il valore di processo non si avvicina al valore nominale, il processo di dosaggio viene sospeso per motivi di sicurezza. Intervallo: 0–720 min

SU2211 ANALYTICAL INSTRUMENTS

Elenco del programmi e spiegazio

5.3 Contatti relè

5.3.1 Relay Contacts: il relè di allarme viene utilizzato come indicatore di errore cumulativo. Nelle normali condizioni operative, il contatto è attivo.

Il contatto è inattivo in caso di:

- interruzione dell'alimentazione
- rilevamento di guasti del sistema, come sensori o componenti elettronici guasti
- elevata temperatura dell'alloggiamento
- valori di processo fuori dagli intervalli programmati

Livelli di allarme del programma per i seguenti parametri:

- valore misurato
- temperatura
- flusso campione (se è selezionato un sensore di flusso)
- elevata temperatura dell'alloggiamento
- elevata temperatura dell'alloggiamento

5.3.1.1 Alarm

5.3.1.1.1 *Alarm High:* se il valore misurato supera il valore di allarme alto, il relè allarme si attiva e nell'elenco messaggi viene visualizzato E001.

Intervallo: $0.000-2000 \ \mu$ S o $0.00-200 \ M\Omega$

- 5.3.1.1.26 Alarm Low: se il valore misurato scende sotto il valore di allarme basso, il relè di allarme viene attivato e E002 viene visualizzato nell'elenco messaggi. Intervallo: $0.000-2000 \ \mu$ S o $0.00-200 \ M\Omega$
- 5.3.1.1.36 *Hysteresis:* all'interno dell'intervallo di isteresi, non si verifica alcuna commutazione relè. Ciò previene eventuali danneggiamenti dei contatti del relè quando il valore misurato oscilla attorno al valore di allarme.

Intervallo: 0.000-2000 mS o 0.00-200 MΩ

- 5.3.1.1.46 *Delay:* durata di attivazione del relè di allarme una volta che il valore di misura ha superato/è sceso al di sotto dell'allarme programmato. Intervallo: 0–28'800 s
 - 5.3.1.2 **Sample Flow:** definire a quale flusso campione debba essere attivato un allarme flusso.
 - 5.3.1.2.1 Flow Alarm: programmare se il relè di allarme debba essere attivato in presenza di un allarme flusso. Scegliere tra sì o no. L'allarme flusso sarà sempre indicato nel display, elenco errori in corso, e salvato nell'elenco messaggi e nel registratore. Valori disponibili: sì o no

Avviso: La presenza di un flusso sufficiente è essenziale per ottenere una misura corretta. Raccomandiamo di impostare il valore «Si».

- 5.3.1.2.2 *Alarm High:* se i valori di misura superano il valore programmato, viene generato il codice di errore E009. Intervallo: 0–200 l/h
- 5.3.1.2.36 *Alarm Low:* se i valori di misura scendono sotto il valore programmato, viene generato il codice di errore E010. Intervallo: 0–200 l/h
 - **5.3.1.3 Sample Temp.:** consente di definire a quale temperatura deve essere emesso un allarme.
 - 5.3.1.3.1 *Alarm High:* se il valore misurato supera il valore di allarme alto, il relè allarme si attiva e viene generato il codice E007. Intervallo: da -30 a +160 °C
- 5.3.1.3.26 *Alarm Low:* se il valore misurato supera il valore di allarme alto, il relè allarme si attiva e viene generato il codice E008. Intervallo: da -30 a +130 °C
 - 5.3.1.4 *Case Temp. high:* impostare il valore di allarme alto per la temperatura dell'alloggiamento dei componenti elettronici. Se il valore supera il valore programmato, viene generato il codice di errore E013. Intervallo: 30–75 °C
 - 5.3.1.5 Case Temp. low: impostare il valore di allarme basso per la temperatura dell'alloggiamento dei componenti elettronici. Se il valore scende sotto il valore programmato, viene generato il codice di errore E014. Intervallo: da -10 a +20 °C

A-96.250.784 / 170719

5.3.2 e 5.3.3	Relay 1 e 2: La funzione dei contatti relè 1 o 2 viene definita dall'uten-
	te.

Avviso: La navigazione nel menu <Relè 1> e <Relè 2> è uguale. Per motivi di semplicità di seguito sono utilizzati solo i numeri di menu del relè 1.

- 1 Prima selezionare tra le funzioni:
 - Limit upper/lower
 - Control upwards/downwards
 - Timer
 - Fieldbus
- 2 Quindi inserire i dati necessari a seconda della funzione selezionata.
- 5.3.2.1 Function = Limit upper/lower:

Quando i relè sono utilizzati come finecorsa superiore o inferiore, programmare quanto segue:

- 5.3.2.20 Parameter: selezionare un valore di processo
- 5.3.2.300 *Setpoint:* se il valore misurato supera o scende sotto il valore nominale, il relè viene attivato.

Parameter	Range
Meas. Value	0.00–200 MΩ or 0.000–2000 μS
Temperature	-30 to +130 °C
Sample flow	0–200 l/h
Meas. uc (non compensata)	0.00–200 MΩ or 0.000–2000 μS

5.3.2.400 *Hysteresis:* all'interno dell'intervallo di isteresi, non si verifica alcuna commutazione relè. Ciò previene eventuali danneggiamenti dei contatti del relè quando il valore misurato oscilla attorno al valore di allarme.

Parameter	Range
Meas. Value	0.00–200 M Ω or 0.000–2000 μS
Temperature	0 to +100 °C
Sample flow	0–200 l/h
Meas. uc (non compensata)	0.00–200 MΩ or 0.000–2000 μS

5.3.2.50 *Delay:* durata di attivazione del relè di allarme una volta che il valore di misura ha superato/è sceso al di sotto dell'allarme programmato.

Intervallo: 0–600 s

5.3.2.1 Function = Control upwards/downwards

I relè possono essere utilizzati per comandare dispositivi di controllo come elettrovalvole, pompe di dosaggio a membrana o valvole motore. Per controllare una valvola motore occorrono entrambi i relè, il relè 1 per aprire e il relè 2 per chiudere la valvola.

- 5.3.2.22 Parameter: selezionare un valore di processo
- **5.3.2.32 Settings:** scegliere il rispettivo attuatore:
 - Proporzionale al tempo
 - Frequenza
 - Valvola motore
- 5.3.2.32.1 Actuator = Time proportional

Esempi di dispositivi di misurazione controllati a tempo proporzionale sono elettrovalvole e pompe peristaltiche.

Il dosaggio è controllato dal tempo di funzionamento.

- 5.3.2.32.20 *Cycle time:* durata di un ciclo di controllo (modifica on/off). Intervallo: 0–600 s
- 5.3.2.32.30 *Response time:* tempo minimo necessario al dispositivo di misurazione per reagire. Intervallo: 0–240 s

5.3.2.32.4 Parametri di controllo:

Vedere 5.2.1.43, p. 48

5.3.2.32.1 Actuator = Frequency

Esempi di dispositivi di misurazione controllati a frequenza di impulsi sono le classiche pompe a membrana con un ingresso di triggering a potenziale zero. Il dosaggio viene controllato dalla velocità di ripetizione dei dosaggi.

5.3.2.32.21 *Pulse frequency:* impulsi max al minuto a cui il dispositivo è in grado di rispondere. Intervallo: 20–300/min

5.3.2.32.32 Parametri di controllo Vedere 5.2.1.43, p. 48

5.3.2.32.1	Actuator = Motor valve		
	Il dosaggio è controllato dalla posizione di una valvola miscelatrice controllata da un motore.		
5.3.2.32.22	<i>Run time:</i> tempo necessario per aprire una valvola completamente chiusa. Intervallo: 5–300 s		
5.3.2.32.32	<i>Neutral zone:</i> tempo di risposta minima in % del tempo di funziona- mento. Se l'uscita di dosaggio richiesta è minore rispetto al tempo di risposta, non si verifica alcun cambiamento. Intervallo: 1–20%		
5.3.2.32.4	Parametri di controllo Vedere 5.2.1.43, p. 48		
5.3.2.1	Function = Timer:		
	Il relè viene attivato ripetutamente a seconda dello schema tempo- rale programmato.		
5.3.2.24	<i>Mode:</i> modalità di funzionamento (intervallo, giornaliero, settimanale)		
5.3.2.24	Interval		
5.3.2.340	<i>Interval:</i> l'intervallo può essere programmato entro un range di 1–1'440 min		
5.3.2.44	<i>Run Time:</i> inserire il periodo di tempo in cui il relè resta chiuso. Range: 5–32'400 sec		
5.3.2.54	<i>Delay:</i> durante il periodo di funzionamento più quello di ritardo, le uscite analogiche e di controllo restano nella modalità di funziona- mento programmata sotto. Range: 0–6'000 sec		

- 5.3.2.6 *Signal Outputs:* selezionare la modalità operativa dell'uscita analogica:
 - *Cont.:* Le uscite di segnale continuano a emettere il valore misurato.
 - *Hold:* Le uscite di segnale mantengono l'ultimo valore misurato valido.

La misurazione viene interrotta.

Gli errori, ad eccezione degli errori fatali, non vengono emessi.

- Off: Le uscite analogiche sono spente (impostate a 0 o 4 mA). Gli errori, ad eccezione di quelli fatali, non vengono emessi.
- 5.3.2.7 *Output/Control*: selezionare la modalità operativa dell'uscita del controller:
 - *Cont.:* Il controller continua a funzionare normalmente.
 - Hold: Il controller continua dall'ultimo valore valido.
 - Off: Il controller è spento.

5.3.2.24	daily			
	Il contatto relè può essere attivato quotidianamente, a qualsiasi ora del giorno.			
5.3.2.341	TStart time: per impostare l'ora di inizio procedere come segue:			
	1 Premere [Enter], per impostare le ore.			
	2 Impostare l'ora con i tasti [] o [].			
	3 Premere [Enter], per impostare i minuti.			
	4 Impostare i minuti con i tasti [] o [].			
	5 Premere [Enter], per impostare i secondi.			
	6 Impostare i secondi con i tasti [
	Range: 00:00:00–23:59:59			
5.3.2.44	Run Time: vedere Intervallo			
5.3.2.54	4 Delay: vedere Intervallo			
5.3.2.6	Signal Outputs: vedere Intervallo			
5.5.2.7				
5.3.2.24	weekly			
	Il contatto relè può essere attivato uno o più giorni di una settima- na. L'ora di inizio quotidiana è valida per tutti i giorni.			
5.3.2.342	Calendar:			
5.3.2.342.1	<i>Start time:</i> l'ora di avvio programmata è valida per ogni giorno pro- grammato. Per impostare l'ora di avvio vedere 5.3.2.341, p. 55. Range: 00:00:00–23:59:59			
5.3.2.342.2	<i>Monday:</i> impostazioni possibili, on o off a			
5.3.2.342.8	Sunday: impostazioni possibili, on o off			
5.3.2.44	Run Time: vedere Intervallo			
5.3.2.54	Delay: vedere Intervallo			
5.3.2.6	Signal Outputs: vedere Intervallo			
5.3.2.7	Output/Control: vedere Intervallo			
5.3.2.1	Function = Fieldbus			
	Il relè verrà pilotato attraverso l'ingresso Profibus. Non occorrono ulteriori parametri.			

- **5.3.4 Input:** le funzioni dei relè e delle uscite analogiche possono essere definite in base alla posizione del contatto di ingresso, ovvero nessuna funzione, aperto o chiuso.
- 5.3.4.1 *Active:* definire quando l'ingresso deve essere attivo: la misurazione è interrotta durante il tempo in cui l'ingresso è attivo.

	No:	L'ingresso non è mai attivo.
--	-----	------------------------------

When closed: L'ingresso è attivo se il relè di ingresso è chiuso.

When open: L'ingresso è attivo se il relè di ingresso è aperto.

- 5.3.4.2 *Uscite analogiche:* selezionare la modalità di funzionamento delle uscite analogiche quando il relè è attivo:
 - *Cont.:* Le uscite di segnale continuano a emettere il valore misurato.
 - Hold: Le uscite analogiche emettono l'ultimo valore misurato valido. La misurazione viene interrotta. Gli errori, ad eccezione degli errori fatali, non vengono emessi.
 - Off: Impostare rispettivamente su 0 o 4 mA. Gli errori, ad eccezione degli errori fatali, non vengono emessi.
- 5.3.4.3 Output/Control (uscita analogica o relè):

Cont.:	Il controller continua a funzionare normalmente.
Hold:	Il controller continua dall'ultimo valore valido.
Off:	Il controller è spento.

5.3.4.4 Fault:

- No: Non viene generato alcun messaggio nell'elenco errori in corso e il relè di allarme non si chiude quando l'ingresso è attivo.
- Yes: Viene generato il messaggio di errore E024 e salvato nell'elenco dei messaggi. Il relè allarme si chiude quando l'ingresso è attivo.
- 5.3.4.5 *Delay:* il tempo di attesa dello strumento dopo che l'ingresso viene disattivato prima di tornare al funzionamento normale.
 Range: 0–6000 sec

5.4 Miscellaneous

5.4.1 Language: impostare la lingua desiderata. Impostazioni disponibili:

Language
German
English
French
Spanish

5.4.2 *Set defaults:* è possibile riportare lo strumento ai valori preimpostati in fabbrica in tre modi diversi:

Set defaults
no
Calibration
In parts
Completely

- Calibration: ripristina l'impostazione predefinita per i valori di calibrazione. Tutti gli altri valori vengono conservati.
- In parts: i parametri di comunicazione vengono conservati in memoria. Per tutti gli altri valori vengono ripristinate le impostazioni predefinite.
- **Completely:** ripristina le impostazioni predefinite per tutti i valori compresi i parametri di comunicazione.
- 5.4.3 *Load Firmware:* gli aggiornamenti del firmware devono essere eseguiti esclusivamente dal personale competente dell'assistenza tecnica.

Load Firmwar	е
no	
yes	

- **5.4.4 Password:** selezionare una password diversa da 0000 per impedire l'accesso non autorizzato ai menu
- 5.4.4.1 Messages
- 5.4.4.2 Maintenance
- 5.4.4.3 Operation
- 5.4.4.4 Installation

Ogni menu può essere protetto da una password *diversa*. Se si dimenticano le password, contattare il rivenditore SWAN più vicino.

5.4.5 *Sample ID:* consente di identificare il valore di processo con qualsiasi testo significativo, come il codice KKS.

5.5 Interface

Selezionare uno dei seguenti protocolli di comunicazione. A seconda della selezione, devono essere definiti diversi parametri.

5.5.1	Protocol: Profibus	
5.5.20	Device address:	Range: 0–126
5.5.30	N. ID:	Range: Analyzer; Manufacturer; Multivariable
5.5.40	Local operation:	Range: Attivato, Disattivato
5.5.1	Protocol: Modbus	RTU
5.5.21	Device address:	Range: 0–126
5.5.31	Baud Rate:	Range: 1200–115200 Baud
5.5.41	Parity:	Range: nessuno, pari, dispari
5.5.1	Protocol: USB Stic	k erfaccia USB è installata. Non sono possibili

altre impostazioni.

10. Valori predefiniti

Avviso: AMI Rescon ha due diverse modalità operative (Resistivity o Conductivity) che possono essere impostate nel menu <Installation>/<Sensors>/<Meas. Mode>. Lo strumento resta nella modalità di funzionamento selezionata anche dopo che i valori predefiniti <Default Values> sono stati completamente resettati. Pertanto questo elenco di valori predefiniti è diviso in due parti, Resistivity e Conductivity dove necessario.

Operation:

Sensors:	Filter Time Const.: Hold after Cal.:	
Alarm Relay		come in Installazione
Relay 1 / 2		come in Installazione
Input		come in Installazione
Logger:	Logger Interval: Clear Logger:	30 min no
Installation:		
Sensors	Flow:	None
	Meas. Mode:	rimane come set
	USP Operating Mode:	Off
	Sensor parameters, Cell Constant:	0.01000cm ⁻
	Sensor parameters, Temp. Corr.	0.00°°C
	Sensor parameters, Cable length	0.0 m
	Temp. Compensation, Comp.	None
Signal Output 3	Parameter:	Meas. Value
	Current loop:	
	Function:	linear
Resistivity	Scaling: Range low:	0.00 MΩ
	Scaling: Range high:	20.00 MΩ
Conductivity	Scaling: Range low:	
	Scaling: Range high:	

AMI INSPECTOR Resistivity

Valori predefiniti

Alarm Relay:	Alarm:	
Resistivity	Alarm high:	200 MΩ
-	Alarm low:	0.00 ΜΩ
	Hysteresis:	1.00 MΩ
Conductivity	Alarm high:	2000 µS
-	Alarm low:	0.000 µS
	Hysteresis:	10.00 µS
	Delay:	5 s
	Sample Flow, Flow Alarm:	yes
	Sample Flow, Alarm high:	120.0 [°] l/h
	Sample Flow, Alarm low:	5.0 l/h
	Sample Temp., Alarm High:	90 °C
	Sample Temp., Alarm Low:	0°C
	Case temp. high:	65 °C
	Case temp. low:	0°C
Relay 1 and 2	Function:	limit upper
	Parameter:	Meas. Value
Resistivity	Setpoint:	200 MΩ
	Hysteresis:	1 MΩ
Conductivity	Setpoint:	1000 µS
	Hysteresis:	10.00 µS
	Delay:	
	Se Function = Control upw. or dnw:	
	Parameter:	Meas. Value
	Settings: Actuator:	Frequency
	Settings: Pulse Frequency:	120/min
Resistivity	Settings: Control Parameters: Setpoint:	200 ΜΩ
-	Settings: Control Parameters: P-band:	1 MΩ
Conductivity	Settings: Control Parameters: Setpoint:	1000 µS
-	Settings: Control Parameters: P-band:	10.00 µS
	Parameter:	Temperature
	Settings: Actuator:	Frequency
	Settings: Pulse Frequency:	120/min
	Settings: Control Parameters: Setpoint:	50 °C
	Settings: Control Parameters: P-band:	1 °C
	Parameter:	Sample flow
	Settings: Actuator:	Frequency
	Settings: Pulse Frequency:	120/min
	Settings: Control Parameters: Setpoint:	25.0 l/h
	Settings: Control Parameters: P-band:	1 l/h

Valori predefiniti

	M
ANALYTICAL INST	RUMENTS

	Settings: Control Parameters: Reset time:	0 s
	Settings: Control Parameters: Derivative Time	t· 0 min
	Settings: Actuator:	Time proportional
	Cycle time:	
	Response time:	10 s
	Settings: Actuator	Motor valve
	Run time: Neutral zone:	60 s 5%
	Se Function = Timer:	
	Mode:	Interval
	Interval:	1 min
	Mode:	daily
	Start time:	00.00.00
	Mode:	weekly
	Calendar; Start time: Calendar; Monday to Sunday:	00.00.00 Off
	Run time:	10 s
	Delay:	5 s
	Signal output: Output/Control:	cont
Input:	Active	when closed
	Output/Control	off
	Fault	no
	Delay	10 s
Miscellaneous	Language:	English
	Set default:	no
	Load IIImware:	for all modes 0000
	Sample ID:	·····
Interface	Protocol:	USB stick

Indice

11. Indice

Α

Accensione/spegnimento	16
Alimentazione	11
Allarme relè	18
Arresto	16

С

calendario	55
Cavo	14
Condizioni campione	11

D

Dispositivi esterni. 16

Ε

Errore irreversibile 32

F

Flusso di campione, definizione del 20

I

Impostazione dello strumento 12

Interruzione prolungata del funzionamento 31

Μ

Modifica del valore 25 Morsetti 15, 18

R

Requisiti in sito					11
Ricarica					16

S

Schema idraulico 10 Spessore dei cavi 14

Т

Tempo di funzionamento . . 11

V

Valori predefiniti 59

12. Notas

SWAN

è rappresentata a livello mondiale da società consociate e da distributori.

collabora con rappresentanti indipendenti in tutto il mondo.

Prodotti SWAN

Strumenti analitici per:

- Acqua ad elevata purezza
- Acqua di alimentazione, vapore e condensato
- Acqua potabile
- Acqua per piscine e per usi sanitari
- Acqua di raffreddamento
- Acque reflue e di scarico

Prodotto in Svizzera

