

AMI INSPECTOR Oxygen

Version 6.00 and higher

Customer Support

SWAN and its representatives maintain a fully trained staff of technical specialists around the world. For any technical question, contact your nearest SWAN representative, or the manufacturer: SWAN ANALYTISCHE INSTRUMENTE AG Studbachstrasse 13 8340 Hinwil Switzerland Internet: www.swan.ch E-mail: support@swan.ch

Document Status

Title:	AMI INSPECTOR Oxygen Operator's Manual		
ID:	A-96.250.701		
Revision	Issue		
00	Sep. 2011	First Edition	
01	Nov. 2013	Nov. 2013 New main board, integrated USB interface	
02	Jan. 2016 AMI Inspector Version 2-A (with AMIAKKU main- board) and Firmware version 6.00		

© 2016, SWAN ANALYTISCHE INSTRUMENTE AG, Switzerland, all rights reserved

subject to change without notice.

Table of Contents

1. 1.1.	Safety Instructions	3 4
1.2.	General Safety Regulations	6
2. 2.1. 2.2. 2.3.	Product Description Description of the System Instrument Overview 1 Technical Data 1	7 10
3.	Installation 1	13
3.1.	Installation Check List 1	13
3.2.	Connecting Sample Inlet and Outlet 1	4
3.2.1	Connect the Sample Inlet to the Quick-Lock Coupling 1	4
3.2.2	Connect the Sample Outlet 1	15
3.3	Install the Swansensor Oxytrace G 1	6
3.4.	Electrical Connections	17
3.5.	Connection Diagram	18
3.5.1	Power Suppry	19 21
3.6.1		- 1 21
3.6.2	Alarm Relay	21 21
3.6.3	Relay Contacts 1 and 2	22
3.7.	Signal Output	22
4.	Instrument Setup	23
4.1.	Establish sample flow	23
4.2.	Programming 2	23
5.	Operation	24
5.1.	Keys	24
5.2.	Display	25
5.3.	Software Structure	26
5.4.	Changing Parameters and values 2	27

о.	Maintenance	28
6.1.	Maintenance Table	28
6.2.	Stop of Operation for Maintenance	28
6.3.	Maintenance of the Oxygen Sensor	29
6.3.1	Electrolyte exchange.	29
6.3.2	Clean Swansensor Oxytrace and G Flow Cell	31
6.4.	Calibration.	32
6.5	Zero-Verification	34
6.6.	Quality Assurance of the Instrument.	34
6.6.1	Activate SWAN Quality assurance procedure	36
6.6.2	Pre-test	36
6.6.3	Connect the sample lines	36
6.6.4	Carry out comparison measurement.	38
6.6.5	Completion of the measurement	39
6.7.	Replacing Fuses	40
6.8.	Replacing the Battery	41
6.9.	Longer Stop of Operation	41
7	Error List	12
7.		42
7. 8.	Program Overview	42 45
8. 8.1.	Program Overview	42 45 45
8. 8.1. 8.2.	Program Overview	45 45 46
8. 8.1. 8.2. 8.3.	Program Overview	42 45 46 47
8. 8.1. 8.2. 8.3. 8.4.	Program Overview Messages (Main Menu 1) Diagnostics (Main Menu 2) Maintenance (Main Menu 3) Operation (Main Menu 4)	45 45 46 47 48
8. 8.1. 8.2. 8.3. 8.4. 8.5.	Program Overview Messages (Main Menu 1) Diagnostics (Main Menu 2) Maintenance (Main Menu 3) Operation (Main Menu 4) Installation (Main Menu 5)	45 45 46 47 48 48
8. 8.1. 8.2. 8.3. 8.4. 8.5.	Program Overview Messages (Main Menu 1) Diagnostics (Main Menu 2) Maintenance (Main Menu 3) Operation (Main Menu 4) Installation (Main Menu 5)	42 45 46 47 48 48 48
8. 8.1. 8.2. 8.3. 8.4. 8.5. 9.	Program Overview Messages (Main Menu 1) Diagnostics (Main Menu 2) Maintenance (Main Menu 3) Operation (Main Menu 4) Installation (Main Menu 5) Program List and Explanations	42 45 45 46 47 48 48 50
8. 8.1. 8.2. 8.3. 8.4. 8.5. 9.	Program Overview Messages (Main Menu 1). Diagnostics (Main Menu 2). Maintenance (Main Menu 3). Operation (Main Menu 4). Installation (Main Menu 5). Program List and Explanations. 1 Messages.	42 45 46 47 48 48 50 50
8. 8.1. 8.2. 8.3. 8.4. 8.5. 9.	Program Overview Messages (Main Menu 1). Diagnostics (Main Menu 2). Maintenance (Main Menu 3). Operation (Main Menu 4) Installation (Main Menu 5). Program List and Explanations. 1 Messages. 2 Diagnostics	45 45 46 47 48 48 50 50 50
8. 8.1. 8.2. 8.3. 8.4. 8.5. 9.	Program Overview Messages (Main Menu 1). Diagnostics (Main Menu 2). Maintenance (Main Menu 3). Operation (Main Menu 4) Installation (Main Menu 5). Program List and Explanations. 1 Messages. 2 Diagnostics 3 Maintenance	45 45 46 47 48 48 48 50 50 50 52
8. 8.1. 8.2. 8.3. 8.4. 8.5. 9.	Program Overview Messages (Main Menu 1) Diagnostics (Main Menu 2) Maintenance (Main Menu 3) Operation (Main Menu 4) Installation (Main Menu 5) Program List and Explanations 1 Messages. 2 Diagnostics 3 Maintenance 4 Operation	45 45 46 47 48 48 48 50 50 50 52 53
8. 8.1. 8.2. 8.3. 8.4. 8.5. 9.	Program Overview Messages (Main Menu 1) Diagnostics (Main Menu 2) Maintenance (Main Menu 3) Operation (Main Menu 4) Installation (Main Menu 5) Program List and Explanations 1 Messages. 2 Diagnostics 3 Maintenance 4 Operation 5 Installation	42 45 46 47 48 48 50 50 50 50 52 53 54
 8. 8.1. 8.2. 8.3. 8.4. 8.5. 9. 10. 	Program Overview Messages (Main Menu 1). Diagnostics (Main Menu 2). Maintenance (Main Menu 3). Operation (Main Menu 4) Installation (Main Menu 5). Program List and Explanations. 1 Messages. 2 Diagnostics 3 Maintenance 4 Operation 5 Installation Default Values.	42 45 46 47 48 48 48 50 50 50 50 52 53 54 69
 8. 8.1. 8.2. 8.3. 8.4. 8.5. 9. 10. 11. 	Program Overview Messages (Main Menu 1) Diagnostics (Main Menu 2) Maintenance (Main Menu 3) Operation (Main Menu 4) Installation (Main Menu 5) Program List and Explanations 1 Messages. 2 Diagnostics 3 Maintenance 4 Operation 5 Installation Default Values	42 45 45 46 47 48 48 48 50 50 50 52 53 54 69 72

AMI INSPECTOR Oxygen - Operator's Manual

This document describes the main steps for instrument setup, operation and maintenance.

1. Safety Instructions

The instructions included in this section explain the potential risks associated with instrument operation and provide important safety practices designed to minimize these risks.		
If you carefully follow the information contained in this section, you can protect yourself from hazards and create a safer work environment.		
More safety instructions are given throughout this manual, at the respective locations where observation is most important. Strictly follow all safety instructions in this publication.		
Operator: Qualified person who uses the equipment for its intended purpose.		
Instrument operation requires thorough knowledge of applications, instrument functions and software program as well as all applicable safety rules and regulations.		
The AMI Operator's Manual shall be kept in proximity of the instru- ment.		
 To be qualified for instrument installation and operation, you must: read and understand the instructions in this manual as well as the Material Safety Data Sheets. know the relevant safety rules and regulations 		

1.1. Warning Notices

The symbols used for safety-related notices have the following significance:

DANGER

Your life or physical wellbeing are in serious danger if such warnings are ignored.

• Follow the prevention instructions carefully.

WARNING

Severe injuries or damage to the equipment can occur if such warnings are ignored.

• Follow the prevention instructions carefully.

CAUTION

Damage to the equipment, minor injury, malfunctions or incorrect process can be the consequence if such warnings are ignored.

• Follow the prevention instructions carefully.

Mandatory Signs The importance of the mandatory signs in this manual.

Safety goggles

Safety gloves

AMI INSPECTOR Oxygen

Safety Instructions

Warning Signs The importance of the warning signs in this manual.

Corrosive

Harmful to health

Electrical shock hazard

Flammable

Warning general

Attention general

1.2. General Safety Regulations

LegalThe user is responsible for proper system operation.RequirementsAll precautions must be followed to ensure safe operation
of the instrument.

Spare Parts
andUse only official SWAN spare parts and disposables. If other parts
are used during the normal warranty period, the manufacturer's
warranty is voided.

Modifications Modifications and instrument upgrades shall only be carried out by an authorized Service Technician. SWAN will not accept responsibility for any claim resulting from unauthorized modification or alteration.

WARNING

Risk of Electrical Shock

If proper operation is no longer possible, the instrument must be disconnected from all power lines, and measures must be taken to prevent inadvertent operation.

- To prevent from electrical shock, always make sure that the ground wire is connected.
- Service shall be performed by authorized personnel only.
- Whenever electronic service is required, disconnect instrument power and power of devices connected to.
 - relay 1,
 - relay 2,
 - alarm relay

WARNING

For safe instrument installation and operation you must read and understand the instructions in this manual.

WARNING

Only SWAN trained and authorized personnel shall perform the tasks described in this document.

2. Product Description

This chapter contains technical data, requirements and performance data.

2.1. Description of the System

The portable AMI INSPECTOR instrument is a complete monitoring system mounted on a small panel with supporting stand and a rechargeable battery for stand-alone operation (>24h), designed as an inspection equipment for quality assurance of online process monitors.

Features General Features of AMI INSPECTORs are:

- Battery life after full charge:
 - >24h at full load (use of 3 relays, USB, signal output, logger)
 - >36h at minimum load (use of logger only)
- · Charging time: approx. 6 hours
- Controlled shut-down if battery is empty.
- Display of remaining battery life in hours.
- For longer battery life the back light of the LC Display is disabled.
- Continuous operation using power adapter. The battery should be discharged at least once a month (normal usage until the monitor automatically shuts down).
- **Battery** The Li-Ion battery is located in the housing of the AMI transmitter. See chapter Power Supply, p. 19 regarding power supply and charging of the battery.
- **Safety features** No data loss after power failure, all data is saved in non-volatile memory. Over voltage protection of in- and outputs. Galvanic separation of measuring inputs and signal outputs.
- **USB interface** Built in USB interface for logger download. Use the USB stick supplied by Swan only (other USB sticks can dramatically reduce battery life).
- **Signal Output** One signal output programmable for measured values (freely scaleable, linear or bilinear) or as continuous control output (control parameters programmable).

Current loop:	0/4–20 mA
Maximal burden	: 510 Ω

- Product Description
 - Relay Two potential-free contacts programmable as limit switches for measuring values, controllers or timer for system cleaning with automatic hold function.

Alarm Relay One potential free contact.

Alternatively:

- Open during normal operation, closed on error and loss of power.
- Closed during normal operation, open on error and loss of power.

Summary alarm indication for programmable alarm values and instrument faults.

Input For potential-free contact to freeze the measuring value or to interrupt control in automated installations (hold function or remote-off)

Measuring Clark principle:

principle The sensor consists of one noble metal electrode (e.g. platinum or gold), a reference electrode (mostly Ag/AgCl) and optionally a metal guard electrode.

The Clark-type electrode is the most widely used oxygen sensor for measuring oxygen dissolved in a liquid. The basic principle is that there is a cathode and an anode submersed in an electrolyte and a voltage is applied between the two parts. Oxygen enters the sensor through a permeable membrane by diffusion, and is reduced at the cathode according to

O₂ + 4e⁻ + 2 H₂O --> 4 OH⁻

This reaction creates a measurable current. There is a linear correlation between the oxygen concentration and the electrical current.

The guard electrode is on the same voltage level as the cathode but there is no current measurement. Oxygen which diffuses from the electrolyte to the cathode is consumed by the guard electrode. As a consequence, residual oxygen in the electrolyte will no more disturb the measurement signal and the response time to low oxygen levels will be shorter.

Temperature compensation The measuring signal depends on temperature, but is automatically compensated to 25 °C. The sample temperature is determined continuously by a temperature sensor inside the oxygen electrode.

Fluidics Swansensor oxygen combined with QV-flow PMMA OTG flow cell. The sample flows via sample inlet [E] through the flow regulating valve [D], where the flow rate can be adjusted. Then the sample flows into the measuring cell [C] were the Oxygen concentration and temperature of the sample is measured.

The sample leaves the measuring cell via flow sensor [B] through the sample outlet [F].

- A Oxygen sensor
- **B** Flow sensor
- C Flow cell

- **D** Flow regulating valve
- E Sample inlet
- F Sample outlet

2.2. Instrument Overview

- A AMI Transmitter
- **B** Oxygen sensor
- C Flow cell
- **D** Flow sensor
- E Flow regulating valve
- F Sample inlet
- G Sample outlet

ANALYTICAL INSTRUMENTS

Technical Data 2.3.

Power Supply	Battery		
	Use original, supplied power adapter only.		
	Voltage:	85–265 VAC, 50/60 Hz	
	Power consumption:	max. 20 VA	
	Charging time:	6h	
	Battery type:	Li-lon	
	During charging protect f (not IP66).	rom heat impact and keep splash-proof	
Operating time	Stand-alone (Battery):	> 24h	
	Connected adapter:	continuous	
	Controlled shut-down wh played.	en battery is empty, remaining time is dis-	
Electronics	Aluminium with a protect	on degree of IP 66 / NEMA 4X	
housing	Ambient temperature:	-10 to +50 °C	
-	Humidity:	10–90% rel., non condensing	
	Display:	backlit LCD, 75 x 45 mm	
Sample	Flow rate:	8 to 25 l/h	
requirements	Temperature:	up to 45 °C	
	Inlet pressure:	0.2 to 1 bar	
	pH:	not lower than pH 4	
	Suspended solids:	less than 10 ppm	
	Outlet pressure:	pressure free	
Flow cell and	Flow cell made of acrylic	glass with built-in flow adjustment valve	
connection	Somple inlet:	1/4" Swagalak tuba adaptar	
	Sample inier.	flexible tube 8x6 mm	
_			
Accuracy	±1.5 % of measured valu	e or ±0.2 ppb	
Reproducibility	±1 % of measured value	or ±0.15 ppb	

Sensor Oxytrace G	Sensor for the measurement of dissolved oxygen in ultra pure water. Precise oxygen measuring cell with integrated temperature sensor and guard electrode for faster initial response time after maintenance.	
Technical data:	Clark oxygen electrode Cathode gold, anode silver, guard silver Zero current-free electrode system Robust 25 µm fluoropolymer diaphragm	
Measuring	0–20 ppm O ₂ (25 °C)	
range:	Automatic range switching	
	Range	Resolution
	0.1 to 9.99 ppb	0.01 ppb
	10 to 199.9 ppb	0.1 ppb
	200 to 1999 ppb	1.0 ppb
	2 to 20 ppm	0.01 ppm
	0 – 200% saturation	
Accuracy:	0,3 % if calibration temper °C deviation to cal. temper	ature = measuring temp. 1,5% at ± 10 rature
Precision:	± 1% of reading or ±0.15 p	bpb
Response time:	t90 < 30 seconds (rising c	oncentration)
Minimal flow:	50 cm/s Pressure resistan	ce: 3 bar
Operating tem- perature:	max. 50 °C	
Material:	polyacetal copolymer	
Protection:	IP 68	
Weight:	150 g	

3. Installation

3.1. Installation Check List

Check	 Instrument's specification must conform to your AC power ratings. See External power adapter, p. 20. Check if the battery is fully charged. 	
Installation	 Connect the sample inlet and outlet, see Connecting Sample Inlet and Outlet, p. 14. Install the Swansensor Oxytrace G into the flow cell, see Install the Swansensor Oxytrace G, p. 16. 	
Power-up	 Open the flow regulating valve and adjust the sample flow to 8–25 l/h. Switch on power. 	
Instrument Setup	 Program all parameters, see chapter 4. 	
Run-in period	 Let the instrument run continuously for 1 h. 	

3.2. Connecting Sample Inlet and Outlet

3.2.1 Connect the Sample Inlet to the Quick-Lock Coupling

The AMI INSPECTOR Oxygen is delivered with a quick-lock coupling. To connect the sample line to the AMI INSPECTOR Oxygen, simply push the nipple into the quick-lock coupling.

- A Flow cell block
- **B** Quick-lock coupling
- C Nipple
- D Sample outlet

3.2.2 Connect the Sample Outlet

Installation

- 1 Loosen the union nut [B] but do not remove it.
 - 2 Push the FEP tube [A] through the union nut [B] as far as it reaches the stop of the threaded tube [E].
 - **3** Tighten the union nut 1¾ rotation using an open ended spanner. Hold Body from turning with a second wrench.
 - 4 Put the FEP Tube into a pressure free drain with sufficient capacity.

- A FEP tube 8x6
- **B** Union nut
- **C** Compression ferrule
- **D** Compression cone
- E Threaded tube
- **F** Tightened connection

3.3 Install the Swansensor Oxytrace G

The Swansensor Oxytrace G is delivered with prefilled electrolyte chamber [E]. A transport protection cap [B] filled with water [D] keeps the sensor wet during transport and storage. To install the sensor proceed as follows:

- 1 Unscrew the fixing sleeve [A].
- 2 Remove the transport protection cap [B].
- 3 Clean the Swansensor Oxytrace G [C] with water.

4 Install the Swansensor Oxytrace G into the flow cell Connect the sensor cable to the transmitter, see Connection Diagram, p. 18.

3.4. Electrical Connections

WARNING

Always turn off DC power before manipulating electric parts. Make sure the power specification of the instrument corresponds to the power on site.

Cable thicknesses

In order to comply with IP66, use the following cable thicknesses

- A PG 9 cable gland: cable Ø_{outer} 4–8 mm
- B PG 7 cable gland: cable Ø_{outer} 3–6.5 mm

NOTICE: Protect unused cable glands

Wire

- For Relays: Use max. 1.5 mm² / AWG 14 stranded wire with end sleeves.
- For Signal Outputs and Input: Use 0.25 mm² / AWG 23 stranded wire with end sleeves.

WARNING

External Voltage.

External supplied devices connected to relay 1 or 2 or to the alarm relay can cause electrical shocks.

- Make sure that the devices connected to the following contacts are disconnected from the power before continuing the installation.
 - relay 1
 - relay 2
 - alarm relay

3.5. Connection Diagram

CAUTION

Use only the terminals shown in this diagram, and only for the mentioned purpose. Use of any other terminals will cause short circuits with possible corresponding consequences to material and personnel.

3.5.1 Power Supply

Contrary to all other Swan online process monitors the AMI INSPECTOR transmitter is supplied with power by battery only. The rechargeable battery (Li-Ion) enables a stand-alone operation for at least 24 hours.

WARNING

Do not provide power directly to the transmitter as this will destroy the motherboard. All AMI INSPECTOR transmitters are supplied with power by battery only.

Charging

Use the original supplied power adapter to charge AMI INSPEC-TOR only. Charging time: approx 6h.

Fully charged a stand-alone operating time of at least 24h is guaranteed:

- >24h at full load (use of 3 relays, USB, signal output, logger)
- >36h at minimal load (use of logger only)

In case that the battery is discharged completely the firmware will automatically shut down.

Switch Power Swit ON - OFF tran

Switch the instrument ON or OFF using the toggle switch on the transmitter.

For continuous operation use the power adapter as well.

Continuous operation

CAUTION

 If the AMI powers ON and then immediately shuts OFF, the battery is empty. Do not hold the toggle switch in ON position, as this can damage the battery.

CAUTION

- During charging protect from heat impact and keep splashproof (plug of power adapter is not IP66).
- Do not supply external devices, e.g. pumps, magnetic valves or any other current consumers with AMI INSPECTOR

CAUTION

 Use the original supplied power adapter to charge AMI IN-SPECTOR only. Use of any other power adapter can damage the battery or cause malfunction.

AMI INSPECTOR Oxygen

Installation

External power adapter

- Universal input range 85 - 265 VAC
- Continuous short circuit protection
- Over voltage protection
- LED indicator for power on
- 2-pin AC inlet (IEC 320-C8) for country-specific power cord

Power cords Two different power cords are supplied:

- Power cord with type C plug (Europlug)
- Power cord with type A plug (NEMA-1)

If a different plug type is needed, please purchase a suitable power cord from your local supplier.

Dimensions

3.6. Relay Contacts

Programming of the relay contacts see 5.3 Relay Contacts, p. 59

3.6.1 Input

NOTICE: Use only potential-free (dry) contacts.

Terminals 13/14 If signal output is set to hold, measurement is interrupted if input is active.

For programming see menu 5.3.4, p. 65

3.6.2 Alarm Relay

NOTICE: For resistive loads only; do not use with capacitive or inductive loads. Max. load 1 A / 250 VAC.

Alarm output for system errors.

Error codes see Error List, p. 42

Programming see menu 5.3.1, p. 59

NOTICE: With certain alarms and certain settings of the AMI transmitter the alarm relay does not switch. The error, however, is shown on the display.

	Terminals	Description	Relay connection
NC ¹⁾ Normally Closed	5/4	Active (opened) during normal operation. Inactive (closed) on error and loss of power.	
NO Normally Open	5/3	Active (closed) during normal operation. Inactive (opened) on error and loss of power.	

1) usual use

3.6.3 Relay Contacts 1 and 2

NOTICE: For resistive loads only; do not use with capacitive or inductive loads.Rated load 100 mA/ 50 V

For programming see Menu Installation 5.3.2 and 5.3.3, p. 61

	Terminals	Description	Relay connection
NO Normally Open	6/7: Relay 1 8/9: Relay 2	Inactive (opened) during normal operation and loss of power. Active (closed) when a pro- grammed function is executed.	→ 0V 07/9

3.7. Signal Output

The signal output 0/4–20 mA PCB is plugged onto the USB interface PCB.

NOTICE: Max. burden 510 Ω.

Terminals 16 (+) and 15 (-).

For programming see menu 5.2 Signal Outputs, p. 55.

A Signal output 0/4–20 mA PCBB USB interface

4. Instrument Setup

4.1. Establish sample flow

- 1 Open flow regulating valve, see Fluidics, p. 9.
- 2 Wait until the flow cell has been completely filled.
- 3 Switch on power.
- 4 Adjust the sample flow to 8–25 l/h.
- **5** Let the instrument run-in for 1 h.

4.2. Programming

Programming Program all parameters for external devices (interface, recorders, etc.) Program all parameters for instrument operation (limits, alarms), see Program List and Explanations, p. 50

5. Operation

5.1. Keys

- A to exit a menu or command (rejecting any changes) to move back to the previous menu level
- B to move DOWN in a menu list and to decrease digits
- C to move UP in a menu list and to increase digits
- **D** to open a selected sub-menu to accept an entry

5.2. Display

5.3. Software Structure

1
•
•
•

Diagnostics	2.1
Identification	•
Sensors	•
Sample	•
I/O State	•
Interface	►

Maintenan	се	3.1
Calibration		►
Service		
Simulation		
Set Time	23.09.06 16:30	00

Operation	4.1
Sensors	•
Relay Contacts	•
Logger	•

Installation	5.1
Sensors	
Signal Outputs	
Relay Contacts	•
Miscellaneous	•
Interface	►

Menu Messages 1

Reveals pending errors as well as an event history (time and state of events that have occurred at an earlier point of time).

It contains user relevant data.

Menu Diagnostics 2

Provides user relevant instrument and sample data.

Menu Maintenance 3

For instrument calibration, relay and signal output simulation, and to set the instrument time. It is used by the service personnel.

Menu Operation 4

User relevant parameters that might need to be modified during daily routine. Normally password protected and used by the process-operator. Subset of menu 5 - Installation, but process-related.

Menu Installation 5

For initial instrument set up by SWAN authorized person, to set all instrument parameters. Can be protected by means of password.

5.4. Changing Parameters and values

Changing parameters

1 Select the parameter you want to 4.4.1 Logger change. Log interval 30 min 2 Press [Enter] Clear logger • Press [____] or [____] key to 3 413 Logger highlight the required parameter. Interval. Log inter Ţ. 4 Press [Enter] to confirm the selec-Clear log 5 min tion or [Exit] to keep the previous 10 min 30 min parameter). 1 Hour \Rightarrow The selected parameter is 4.1.3 Logger highlighted (but not saved yet). 10 min Log interva 5 Press [Exit]. Clear logger no \Rightarrow Yes is highlighted. Logger 4.1.3 Log inte Save ? 6 Press [Enter] to save the new pa-Clear lou rameter. no Yes \Rightarrow The system reboots, the new NO parameter is set. 1 Select the value you want to Alarm oxygen 5.3.1.1.1 change. Alarm High 10.00 ppm) 2 Press [Enter]. Alarm I ow 1.00 ppb Hvsteresis dag 01.0 3 Set required value with [____] or Delav 5 Sec [_____] key. 4 Press [Enter] to confirm the new Alarm oxygen 5.3.1.1.1 value. Alarm High 8.00 pbb 5 Press [Exit]. Alarm Low .00 ppb \Rightarrow Yes is highlighted. Hvsteresis dd 01.0 Delav 5 Sec 6 Press [Enter] to save the new value.

The following example shows how to change the logger interval:

Changing

values

6. Maintenance

Maintenance frequency depends strongly on the water quality. The AMI INSPECTOR Oxygen is designed for determination of low level of dissolved oxygen in high purity water.

It is not suitable for the measurement of dissolved oxygen in waste water.

6.1. Maintenance Table

Monthly	If necessary, perform an air calibration.	
Half-yearly	Clean Swansensor Oxytrace G membrane with a soft tissue.	
Yearly	If necessary, replace filling electrolyte. If the sensor is exposed to air frequently during long time intervals, the electro- lyte and membrane may have to be changed earlier (see below*). Clean flow cell and flow meter, if dirty.	
Every 2nd year	Replace Swansensor Oxytrace G membrane by using a new, prefilled sensor cap.	

*A change of membrane and electrolyte is recommended:

- if indicated in the maintenance list (remaining amount <10%)
- if the response of the sensor is slow
- if the sensor can not be calibrated any more and/or the instrument shows a corresponding error message
- if the sensor signal is very unstable.

6.2. Stop of Operation for Maintenance

- 1 Shut off power of the instrument.
- 2 Stop sample flow by closing the flow regulating valve.

6.3. Maintenance of the Oxygen Sensor

WARNING

Etching liquid

The electrolyte is alkaline and caustic. It contains less than 1% of potassium hydroxide.

- Do not ingest. Wear protective goggles and gloves during handling. Avoid contact with clothes.
- In case of accidental contact with the eyes, wash immediately with clear water and contact a physician. Show him the label of the bottle or this section of the manual.
- Short contact with skin is harmless, nevertheless wash with lots of water.

6.3.1 Electrolyte exchange

An electrolyte exchange is indicated in the maintenance list as soon as the remaining amount is below 10%.

- A Fixing sleeve
- **B** Sensor
- C Flow cell

- 1 Unscrew the fixing sleeve [A].
- 2 Remove the sensor from the flow cell.

- A Swansensor Oxytrace G
- **B** Thread
- **C** Groove
- D Guard electrode
- E Anode
- F Measuring head
- G Cathode
- H Sensor cap with membrane

- **3** Unscrew and remove the sensor cap [H] from the Swansensor Oxytrace G [A].
- 4 Empty the remaining electrolyte.
- 5 Refill the sensor cap with fresh electrolyte.

NOTICE: There is a groove [C] in the thread [B] of the sensor, where excessive air and electrolyte can escape while screwing the sensor cap onto the sensor. Hold the sensor in vertical position, measuring head pointing downwards.

- 6 Slowly screw the sensor cap onto the sensor to allow the excess electrolyte to escape without building up too much pressure inside the electrode. Fasten sensor cap tightly.
- 7 Clean the sensor thoroughly and dry the sensing membrane with a soft tissue.
- 8 Switch on power.
- 9 Let the sensor run-in at air for at least 30 min, better 1 h.
- 10 Afterwards perform an air calibration.
- 11 Install the sensor into the flow cell.
- 12 Select "New Filling" to reset the counter for remaining electrolyte, see <Maintnence>/<Service> 3.2.1, p. 52).

6.3.2 Clean Swansensor Oxytrace and G Flow Cell

Depending on the water quality, the Swansensor Oxytrace G and the flow cell will necessitate a cleaning.

Before cleaning, stop operation as described in Stop of Operation for Maintenance, p. 28.

- 1 Dismount the Swansensor Oxytrace G, see Electrolyte exchange, p. 29.
- 2 Clean the sensor with a soft tissue and rinse it with water afterwards.
- **3** Use a soft brush to remove the dirt which sticks on the walls of the flow cell.
- 4 Flush the flow cell with clean water.
- 5 Install the Swansensor Oxytrace G and start sample flow.

6.4. Calibration

The sensing part of the sensor must not be in direct contact with water!

In the wet flow cell, the atmosphere will be saturated with water vapor. This atmosphere will produce the most accurate calibration results.

The required time for a calibration depends mainly on the difference between temperature and oxygen content in the sample and in the air. It can take 15 - 20 minutes. This is also the case, if the electrolyte was exchanged.

As soon as the reading is stable, the microprocessor will store the calibration data in the memory. The end of the calibration is indicated on the display.

To perform a calibration proceed as follows:

- 1 Navigate to menu <Maintenance>/<Calibration>.
- 2 Press [Enter] to start the calibration and follow the dialog on the display.

Calibration	3.1.5
Close regulating v	alve
to turn off sample t	flow.
<enter> to contin</enter>	ue
Calibration	3.1.5
Calibration	3.1.5
Take sensor out	Of
Calibration	3.1.5
Take sensor out	of
flow cell and dr	y
Calibration	3.1.5
Take sensor out	of
flow cell and dr	y
membrane and se	nsor
Calibration	3.1.5
Take sensor out	of
flow cell and dr	y
membrane and se	nsor

- **3** Stop the sample flow by closing the flow regulating valve.
- 4 Unscrew and remove the threaded sleeve [A], see Electrolyte exchange, p. 29.
- 5 Remove the oxygen sensor [B] from the flow cell [C].
- 6 Dry the sensor membrane and the flow cell with a soft paper tissue.

 Calibration
 3.1.5

 Place the electrode into the wet flow cell at a slightly tilted angle.

 <Enter> to continue

A Tilted sensor B Flow cell

- 7 Press [Enter] to start the calibration measurement.
 - ⇒The saturation should reach 100%, the saturation current should be about 22 µA to 33 µA. If the measuring values are not stable during the measuring period, the calibration will be discarded.
- 8 Press [Enter] to confirm the calibration.

Calibration	3.1.1
Saturation	98.7 %
Sat. Current	32 µA
Progress	

Calibration	3.1.1
Saturation	98.7 %
Sat. Current	32 μΑ
Calibration Successful	

6.5 Zero-Verification

Swansensor Oxytrace G for the measurement of low oxygen content (< 1 ppb).

- 1 Calibrate the sensor according to chapter Calibration, p. 32.
- 2 Prepare a 5%-sodium sulfite solution with demineralized water.
- **3** Put the electrode into the sodium sulfite solution afterwards. Assure that there are no air bubbles in front of the sensor.
- 4 The measured value should now be < 1 ppb.

NOTICE: Depending on the state of the electrode this process can take several hours. In case of an electrode-refill, this can take days until the measured value is lower than 1 ppb.

6.6. Quality Assurance of the Instrument

Every SWAN on-line instrument is equipped with integrated, autonomous quality assurance functions to survey the plausibility of each measurement.

For the AMI Oxytrace / AMI Oxytrace QED these are:

- continuous monitoring of sample flow
- continuous monitoring of the temperature inside the transmitter case
- · periodic accuracy test with ultra high precision resistors

Further a manual, menu driven inspection procedure can be carried out using a certified reference instrument. Running at the same sampling point as an inspection equipment, the AMI Inspector Oxygen verifies the measuring results. After enabling the quality assurance procedure by defining the quality assurance level, the instrument reminds the user periodically to run the procedure and results are stored in a history for review.

Quality
assuranceCentral feature of the quality assurance function is the assignment
of the monitored process to a Quality assurance level.

level There are three predefined levels plus a user level. Hereby the inspection interval, the deviation limits of temperature and measuring result between the inspection equipment and the monitoring instrument are defined.

- Level 1: **Trend**; Measurement used as an additional information to follow the process indicating trends.
- Level 2: Standard; Monitoring of several parameters of a process (e.g. oxygen, saturation). In case of instrument failure, other parameters can be used for process monitoring.
- Level 3: **Crucial;** Monitoring of critical processes, value is used for control of another part or subsystem (valve, dosing unit, etc.).

Additional level:

• Quality level 4: **User**; User defined inspection interval, maximal deviation of temperature and measuring result.

Quality Level	max. deviation temperature [°C] ^{a)}	max. deviation result [%]	min. inspection interval
0: Off	Off	Off	Off
1: Trend	0.5 °C	10 %	annual
2: Standard	0.4 °C	5 %	quarterly
3: Crucial	0.3 °C	5 %	monthly
4: User	0 - 2°C	0 - 20%	annual, quarterly, monthly

a) sample temperature must be 25 °C +/-5 °C.

Procedure The standard workflow includes the following steps:

- 1 Activate SWAN Quality assurance procedure
- 2 Pre-test
- 3 Connect instruments
- 4 Carry out comparison measurement
- 5 Completion of the measurement

NOTICE: The procedure should only be carried out through qualified personnel.

6.6.1 Activate SWAN Quality assurance procedure

Enable quality assurance procedure on the process monitor(s) which shall be checked by selecting the quality level in menu 5.1.2.1. The corresponding sub menus are then activated.

NOTICE: The activation is necessary the first time only.

6.6.2 Pre-test

- Reference instrument: AMI Inspector Oxygen:
 - Check certificate; reference instrument certificate not older than one year.
 - Check battery; Battery of the AMI Inspector Oxygen should be completely charged. Remaining operating time on display minimum 20 hours.
 - Sensor is in working condition
- On-line instrument: Monitor AMI Oxytrace:
 - Good order and condition; Flow cell free of particles, Sensor surface free of deposits.
 - Check message list; Review the message list in menu 1.3 and check for frequently occurring alarms (as for example flow alarms). If alarms occur frequently remove cause before starting the procedure.

6.6.3 Connect the sample lines

See corresponding chapter in the manual of the process monitor which shall be checked with a reference instrument.

The choice of sampling depends strongly on local conditions on site. Possible sampling:

- via sample point,
- via T-fitting or
- via piggyback/downstream

NOTICE:

- avoid ingress of air, use screwed fitting,
- sample as near as possible to the process monitor,
- wait approx. 10 minutes, whilst measurement is running, until measurement value and temperature are stabilized.

Example As an example following picture shows the connection of the reference instrument via T-fitting to the process monitor.

- **B** AMI Inspector Oxygen

- G T-fitting
- **C** Reference flow cell
- **D** On-line flow cell
- 1 Stop sample flow to the monitor AMI Oxytrace by closing the appropriate valve, e.g. back pressure regulator, sample preparation or flow regulating valve at flow cell.
- 2 Connect sample line of the monitor AMI Oxytrace [A] with the sample inlet of the reference instrument AMI Inspector Oxygen [B]. Use the supplied tube made of PA.
- 3 Connect sample outlet of the reference instrument AMI Inspector Oxygen to the sample outlet funnel of the monitor.
- Switch on the AMI Inspector Oxygen. Open the flow regulating 4 valve and regulate the sample flow to 10 l/h. The actual flow is shown on the transmitter.

6.6.4 Carry out comparison measurement

Start by selecting Quality Assurance in menu 3.5 of the monitor AMI Oxytrace.

- 1 Navigate to menu Maintenance / Quality Assurance.
- 2 Press [Enter].
- 3 Follow the dialog on the Display.

Quality Assurance	3.5.5
- Carry out preparati - Install Inspector - Sample flow to 10	ons I/h
<enter> to continue</enter>	
Quality Assurance Value O2 Value Temp. Wait 10 Minutes <enter> to continue</enter>	3.5.5 0.05 ppb 25.00 °C
Quality Assurance Value O2 Value Temp. Inspector O2 Inspector Temp. <enter> to con</enter>	3.5.3 0.05 ppb 25.00 °C 0.06 ppb 25.0 °C tinue
Quality Assurance Value O2 Value Temp. Inspector Inspector Temp. <enter> to continue</enter>	3.5.4 0.05 ppb 25.00 °C 0.06 ppm 25.0 °C
Quality Assurance Max. Dev. O2 Max. Dev. Temp. Dev. O2 Dev. Temp. QA-Check succ	3.5.5 0.5 % 0.4 °C 0.1 % 0.4 °C cesful

- 4 Carry out pre test preparations Connect instruments. Regulate sample flow to 10 l/h using the appropriate valve.
- 5 Wait 10 minutes whilst measurement is running. Press [Enter] to continue.
- 6 Read the ppb value of the reference instrument and enter under "Inspector." by using the [] or [] keys.
- 7 Press [Enter] to confirm.
- 8 Read temperature value of the reference instrument and enter under "Inspector Temp." by using the [____] or [____] keys.
- 9 Press [Enter] to confirm.
- 10 Press [Enter] to continue.
 - ⇒ The results are saved in QA-History regardless if successful or not

6.6.5 Completion of the measurement

- 1 Stop the sample flow to the AMI Oxytrace by closing the appropriate valve, e.g. back pressure regulator, sample preparation or flow regulating valve at flow cell again.
- 2 Close flow regulating valve of the AMI Inspector.
- 3 Disconnect the AMI Inspector by removing the tubes and connect the sample outlet of the Monitor AMI Oxytrace to the sample outlet funnel again.
- 4 Start sample flow again and regulate sample flow.
- 5 Shutdown the AMI Inspector Oxygen.

If the instrument will not be used for a longer period of time, see Longer Stop of Operation, p. 41.

6.7. Replacing Fuses

WARNING

External Voltage.

External supplied devices connected to relay 1 or 2 or to the alarm relay can cause electrical shocks.

- Make sure that the devices connected to the following contacts are disconnected from the power before continuing the installation.
 - relay 1
 - relay 2
 - alarm relay

Find and repair the cause for the short circuit before replacing the fuse. Use tweezers or needle-nosed pliers to remove the defective fuse.

Use original fuses provided by SWAN only.

A 1.25 AF/250V Instrument power supply

6.8. Replacing the Battery

- A Battery
- B Battery plug
- C Ribbon cable

- 1 Switch the AMI Inspector off.
- 2 If connected, disconnect the power adapter from the power jack.
- **3** Open the transmitter housing.
- 4 Pull out the ribbon cable [C] from the mainboard.
- 5 Disconnect battery plug [B] and replace the battery.

6.9. Longer Stop of Operation

- 1 Shut off power of the instrument.
- 2 Stop sample flow.
- 3 Remove the Swansensor Oxytrace G.
- 4 Clean the sensor with a soft tissue and rinse it with water afterwards.
- **5** Use a soft brush to remove the dirt which sticks on the walls of the flow cell.
- 6 Fill the flow cell with water.
- 7 Install the Swansensor Oxytrace G.

7. Error List

Error 📢

Non-fatal Error. Indicates an alarm if a programmed value is exceeded.

Such Errors are marked E0xx (bold and black).

11

Þ

1.1.5

F0021

Fatal Error 🔆 (blinking symbol)

Control of dosing devices is interrupted.

The indicated measured values are possibly incorrect.

Fatal Errors are divided in the following two categories:

- Errors which disappear if correct measuring conditions are recovered (i.e. Sample Flow low).
 Such Errors are marked E0xx (bold and orange)
- Errors which indicate a hardware failure of the instrument. Such Errors are marked E0xx (bold and red)

HOLD	÷	14:10:45
R1	7.04	ppm
R2		
8 l/h		25.4°C

Messages

Pending Errors

Maintenance List Message List

Pending Errors

Frror Code

Error or if **fatal Error** Error not yet acknowledged.

Check **Pending Errors 1.1.5** * and take corrective action. Press [ENTER].

Navigate to menu <Messages>/ <Pending Errors>.

Press [ENTER] to acknowledge the Pending Errors. The Error is reset and saved in the Message List.

Error	Description	Corrective action
E001	oxygen Alarm high	 check process check programmed value, see 5.3.1.1.1, p. 59
E002	oxygen Alarm low	 check process check programmed value, see 5.3.1.1.25, p. 59
E003	Saturation Alarm high	 check process check programmed value, see 5.3.1.4, p. 60
E004	Saturation Alarm low	 check process check programmed value, see 5.3.1.4, p. 60
E007	Sample Temp. high	 check process check programmed value, see 5.3.1.3.1, p. 60
E008	Sample Temp. low	 check process check programmed value, see 5.3.1.3.22, p. 60
E009	Sample Flow high	 check sample flow check programmed value, see 5.3.1.2.2, p. 60
E010	Sample Flow low	 establish sample flow clean instrument check programmed value, see 5.3.1.2.32, p. 60
E011	Temp. shorted	Check wiring of sensorCheck sensor
E012	Temp. disconnected	 Check wiring of sensor Check sensor

Error	Description	Corrective action
E013	Case Temp. high	 check case/environment temperature check programmed value, see 5.3.1.5.1, p. 61
E014	Case Temp. low	 check case/environment temperature check programmed value, see 5.3.1.5.2, p. 61
E017	Control Timeout	 check control device or programming in Installation, Relay contact, Relay 1/2 see 5.3.2 and 5.3.3, p. 61
E024	Input active	 See If Fault Yes is programmed in Menu see 5.3.4, p. 65
E026	IC LM75	 – call service
E030	EEProm Frontend	– call service
E031	Calibration Recout	– call service
E032	Wrong Frontend	– call service
E033	Power-on	 none, normal status
E034	Power-down	 none, normal status
E065	Electrolyte depleted	 Refill electrolyte, see Electrolyte exchange, p. 29

8. Program Overview

For explanations about each parameter of the menus see Program List and Explanations, p. 50.

- Menu 1 Messages informs about pending errors and maintenance tasks and shows the error history. Password protection possible. No settings can be modified.
- Menu 2 Diagnostics is always accessible for everybody. No password protection. No settings can be modified.
- Menu 3 **Maintenance** is for service: Calibration, simulation of outputs and set time/date. Please protect with password.
- Menu 4 **Operation** is for the user, allowing to set limits, alarm values, etc. The presetting is done in the menu Installation (only for the System engineer). Please protect with password.
- Menu 5 Installation: Defining assignment of all inputs and outputs, measuring parameters, interface, passwords, etc. Menu for the system engineer. Password strongly recommended.

8.1. Messages (Main Menu 1)

Pending Errors 1.1*	Pending Errors	1.1.5*	* Menu numbers
Maintenance List 1.2*	Maintenance List	1.2.5*	
Message List	Number	1.3.1*	
1.3*	Date, Time		

8.2. Diagnostics (Main Menu 2)

Identification	Desig.	AMI Oxytrace		* Menu numbers
2.1*	Version	6.00-11/15		
	Factory Test	Instrument	2.1.3.1*	
	2.1.3*	Motherboard		
		Front End		
	Operating Time	Years / Days / Hou	ırs / Minutes / Seconds	2.1.4.1*
	2.1.4*			
Sensors	Sensor	Current Value		
2.2*	2.2.1*	(Raw value tc)		
		(Raw value)		
		Saturation		
		Cal. History	Number	2.2.1.5.1*
		2.2.1.5*	Date, Time	
			Sat. Current	
			Air pressure	
	Miscellaneous	Case Temp.	2.2.2.1*	
	2.2.2*	Air pressure		
Sample	Sample ID	2.3.1*		
2.3*	Temperature °C			
	Nt5K Ohm			
I/O State	Alarm Relay	2.4.1*		
2.4*	Relay 1/2	2.4.2*		
	Input			
	Signal Output 3			
Interface	Protocol	2.5.1*		
2.5*	USB Stick			

* Menu numbers

8.3. Maintenance (Main Menu 3)

Calibration	Calibration	3.1.5	
3.1*			
Service	Electrolyte	Last filling	
3.2*	3.2.1*	Remaining amount	
		Remaining time	
		New Filling	3.2.1.5*
Simulation	Alarm Relay	3.3.1*	
3.3*	Relay 1	3.3.2*	
	Relay 2	3.3.3*	
	Signal Output 3	3.3.6*	
Set Time	(Date), (Time)		
3.4*			

8.4. Operation (Main Menu 4)

Sensors	Filter Time Const.	4.1.1*		
4.1*	Hold after Cal.	4.1.2*		
Relay Contacts	Alarm Relay	Alarm Oxygen	Alarm High	4.2.1.1.1*
4.2*	4.2.1*	4.2.1.1*	Alarm Low	4.2.1.1.22*
			Hysteresis	4.2.1.1.32*
			Delay	4.2.1.1.42*
		Alarm Saturation	Alarm High	4.2.1.2.1*
		4.2.1.2*	Alarm Low	4.2.1.2.22*
			Hysteresis	4.2.1.2.32*
			Delay	4.2.1.2.42*
	Relay 1/2	Setpoint	4.2.x.100*	
	4.2.2* - 4.2.3*	Hysteresis	4.2.x.200*	
		Delay	4.2.x.30*	
	Input	Active	4.2.4.1*	
	4.2.4*	Signal Outputs	4.2.4.2*	
		Output / Control	4.2.4.3*	
		Fault	4.2.4.4*	
		Delay	4.2.4.5*	
Logger	Log Interval	4.3.1*		
4.3*	Clear Logger	4.3.2*		* Menu numbers
	Eject USB Stick	4.3.3*		

8.5. Installation (Main Menu 5)

Sensors	Miscellaneous	Flow	5.1.1.1*	* Menu numbers
5.1*	5.1.1*	Offset	5.1.1.2*	
Signal Outputs	Signal Output 3	Parameter	5.2.1.1	
5.2*	5.2.1*	Current Loop	5.2.1.2*	
		Function	5.2.1.3*	
		Scaling	Range Low	5.2.1.40.10*
		5.2.1.40	Range High	5.2.1.40.20*
Relay Contacts	Alarm Relay	Alarm oxygen	Alarm High	5.3.1.1.1*
5.3*	5.3.1*	5.3.1.1*	Alarm Low	5.3.1.1.22
			Hysteresis	5.3.1.1.32
			Delay	5.3.1.1.42

AMI INSPECTOR Oxygen Program Overview

		Sample Flow	Flow Alarm	5.3.1.2.1
		5.3.1.2*	Alarm High	5.3.1.2.2*
			Alarm Low	5.3.1.2.32*
		Sample Temp.	Alarm High	5.3.1.3.1*
		5.3.1.3*	Alarm Low	5.3.1.3.22*
		Alarm Saturation	Alarm High	5.3.1.4.1*
		5.3.1.4*	Alarm Low	5.3.1.4.22
			Hysteresis	5.3.1.4.32
			Delay	5.3.1.4.42
		Case Temp.	Case Temp. high	5.3.1.5.1*
		5.3.1.5*	Case Temp. low	5.3.1.5.2*
	Relay 1/2	Function	5.3.2.1-5.3.3.1*	
	5.3.2* - 5.3.3*	Parameter	5.3.2.20-5.3.3.20*	
		Setpoint	5.3.2.300-5.3.3.301*	
		Hysteresis	5.3.2.400-5.3.3.401*	
		Delay	5.3.2.50-5.3.3.50*	
	Input	Active	5.3.4.1*	
	5.3.4*	Signal Outputs	5.3.4.2*	
		Output/Control	5.3.4.3*	
		Fault	5.3.4.4*	
		Delay	5.3.4.5*	
Miscellaneous	Language	5.4.1*		
5.4*	Set defaults	5.4.2*		
	Load Firmware	5.4.3*		
	Password	Messages	5.4.4.1*	
	5.4.4*	Maintenance	5.4.4.2*	
		Operation	5.4.4.3*	
		Installation	5.4.4.4*	
	Sample ID	5.4.5*		
Interface	Protocol	USB Stick		
5.5*	5.5.1*			* Menu numbers

1 Messages

1.1 Pending Errors

1.1.5 Provides the list of active errors with their status (active, acknowledged). If an active error is acknowledged, the alarm relay is active again. Cleared errors are moved to the Message list.

1.2 Maintenance List

1.2.5 Provides the list of necessary maintenance. Cleared maintenance messages are moved to the Message list.

1.3 Message List

1.3.1 Shows the error history: Error code, date / time of issue and status (active, acknowledged, cleared). 65 errors are memorized. Then the oldest error is cleared to save the newest error (circular buffer).

2 Diagnostics

In diagnostics mode, the values can only be viewed, not modified.

2.1 Identification

Desig.: Designation of the instrument. **Version**: Firmware of instrument (e.g. V6.00-11/15)

- **2.1.3 Factory Test**: Test date of the Instrument, Motherboard and Frontend.
- **2.1.4 Operating Time:** Shows the operating time in Years, Days, Hours, Minutes and Seconds.

2.2 Sensors

- 2.2.1 Oxytrace G
 - *Current value:* Shows the actual measuring value in ppb.
 - *Raw value tc:* Shows the actual temperature compensated measuring value in mA.
 - Saturation Shows the actual saturation in %

2.2.1.4 Cal. History

Review the diagnostic values of the last calibration of the oxygen sensor. Max. 64 data records are memorized. *Number*: Calibration counter. *Date, Time*: Date and time of the calibration. *Sat. Current*: Saturation current at that time of calibration. *Air pressure*: Air pressure at that time of calibration.

2.2.2 Miscellaneous:

2.2.2.1 *Case Temp:* Shows the actual temperature in °C inside the transmitter.

Air pressure: Shows the actual air pressure in hPa

2.3 Sample

2.3.1 Sample ID: Shows the assigned sample identification. This identification is defined by the user to identify the location of the sample Temperature: Shows temperature in °C. (Nt5K): Shows raw value of the temperature in Ω. Sample Flow: Shows the sample flow in I/h (Raw value) Shows the sample flow in Hz

2.4 I/O State

Shows actual status of all in- and outputs.

2.4.1	Alarm Relay:	Active or inactive
	Relay 1 and 2:	Active or inactive
	Input:	Open or closed.
	Signal Output 3:	Actual current in mA

2.5 Interface

2.5.1 Protocol USB Stick.

SU2211 ANALYTICAL INSTRUMENTS

Program List and Explanations

3 Maintenance

3.1 Calibration

3.1.1 Start a calibration and follow the instructions on the screen. Displayed values are saturation in % and the saturation current in mA. The indication bar shows the progress. Detailed explanation see Calibration, p. 32.

3.2 Service

3.2.1 Electrolyte

Last Filling: Shows the date of the last filling of electrolyte. *Remaining Amount*: Remaining amount of electrolyte in %. *Remaining Time*: Remaining time in days until electrolyte exchange recommended.

3.2.1.5 *New Filling*: Select "Yes" after electrolyte exchange to reset the counter.

3.3 Simulation

To simulate a value or a relay state, select the

- alarm relay
- relay 1 and 2
- signal output 3 (signal outputs 1 and 2 are deactivated)
 with the [] or [] keys.

Press the [Enter]> key.

Change the value with the [] or [] keys.

Press the [Enter] key.

 \Rightarrow The value is simulated by the relay/signal output.

Alarm Relay:	Active or inactive
Relay 1:	Active or inactive
Relay 2:	Active or inactive
Signal Output 3:	Current in mA

At the absence of any key activities, the instrument will switch back to normal mode after 20 min. If you quit the menu, all simulated values will be reset.

3.4 Set Time

Adjust date and time.

4 Operation

4.1 Sensors

- 4.1.1 Filter Time Constant: Used to damp noisy signals. The higher the filter time constant, the slower the system reacts to changes of the measured value. Range: 5–300 Sec
- 4.1.2 Hold after Cal: Delay permitting the instrument to stabilize again after calibration. During calibration plus hold-time, the signal outputs are frozen (held on last valid value), alarm values, limits are not active.
 Range: 0–6'000 Sec

4.2 Relay Contacts

See Relay Contacts, p. 21

4.3 Logger

The instrument is equipped with an internal logger. The data can be copied to the USB stick installed in the transmitter. The logger can save approx. 1500 data records. The Records consists of: Date, time, alarms, measuring values, raw values, case temperature, flow.

4.3.1 Log Interval: Select a convenient log interval. Consult the table below to estimate the max logging time. When the logging buffer is full, the oldest data record is erased to make room for the newest one (circular buffer).
 Range: 1 Second to 1 hour

Interval	1 s	5 s	1 min	5 min	10 min	30 min	1 h
Time	25 min	2 h	25 h	5 d	10 d	31 d	62 d

- 4.3.2 *Clear Logger:* If confirmed with **yes**, the complete logger data is deleted. A new data series is started.
- 4.3.3 Eject USB Stick

With this function all logger data are copied to the USB stick before the USB stick is deactivated.

5 Installation

5.1 Sensors

- 5.1.1 Miscellaneous
- 5.1.1.1 *Flow*: If a flow cell without flow measurement (e.g. B-Flow) is used, choose none. With flow measurement select Q-Flow
- 5.1.1.2 O2 Offset: Manual, small correction of the offset. Range -5 to +5 ppb.

5.1.2 Quality Assurance

Not applicable.

5.2 Signal Outputs

5.2.1 Signal Output 3 (signal outputs 1 and 2 are deactivated)

- 5.2.1.1 *Parameter:* Assign one of the process values to the signal output. Available values:
 - Oxygen
 - Temperature
 - Sample Flow (if a flow sensor is selected)
 - Saturation
- 5.2.1.2 *Current Loop:* Select the current range of the signal output. Make sure the connected device works with the same current range.

Available ranges: 0-20 mA or 4-20 mA

- 5.2.1.3 *Function:* Define if the signal output is used to transmit a process value or to drive a control unit. Available functions are:
 - Linear, bilinear or logarithmic for process values. See As process values, p. 55
 - Control upwards or control downwards for controllers. See As control output, p. 57
- As process The process value can be represented in 3 ways: linear, bilinear or logarithmic. See graphs below.

AMI INSPECTOR Oxygen

Program List and Explanations

- **X** Measured value (logarithmic)
- **5.2.1.40** Scaling: Enter beginning and end point (Range low & high) of the linear or logarithmic scale. In addition, the midpoint for the bilinear scale.

Parameter: Oxygen.

Range low: 0.00 ppb-20.00 ppm Range high: 0.00 ppb-20.00 ppm

Parameter: Temperature

Range low: -30 to + 130 $^{\circ}$ C Range high: 30 to + 130 $^{\circ}$ C

Parameter: Sample flow

Range low: 0–50 l/h Range high: 0–50 l/h

Parameter: Saturation

Range low: 0–200 % Range high: 0–200 %

As control Signal outputs can be used for driving control units. We distinguish different kinds of controls:

- *P-controller*: The controller action is proportional to the deviation from the setpoint. The controller is characterized by the P-Band. In the steady-state, the setpoint will never be reached. The deviation is called steady-state error. Parameters: setpoint, P-Band
- *PI-controller*: The combination of a P-controller with an I-controller will minimize the steady-state error. If the reset time is set to zero, the I-controller is switched off. Parameters: setpoint, P-Band, reset time.
- *PD-controller:* The combination of a P-controller with a D-controller will minimize the response time to a fast change of the process value. If the derivative time is set to zero, the D-controller is switched off.
- Parameters: setpoint, P-Band, derivative time. *PID-controller:* The combination of a P-, an I and a D-controller allows a proper control of the process.

Parameters: setpoint, P-Band, reset time, derivative time. Ziegler-Nichols method for the optimization of a PID controller: **Parameters**: Setpoint, P-Band, Reset time, Derivative time

The point of intersection of the tangent with the respective axis will result in the parameters a and L.

Consult the manual of the control unit for connecting and programming details. Choose control upwards or downwards.

	<i>Setpoint</i> : User-defined process value for the selected parameter. <i>P-Band</i> : Range below (upwards control) or above (downwards con- trol) the set-point, within which the dosing intensity is reduced from 100% to 0% to reach the set-point without overshooting.
5.2.1.43 5.2.1.43.10	Control Parameters : if Parameter = Oxygen Setpoint:
	Range: 0.00 ppb–20.00 ppm
5.2.1.43.20	P-Band:
	Range: 0.00 ppb–20.00 ppm
5.2.1.43	Control Parameters: if Parameter = Temperature
5.2.1.43.11	Setpoint:
	Range: -30 to + 130 °C
5.2.1.43.21	P-Band:
5.2.1.43	Control Parameters: If Parameter = Sample flow
J.Z. 1.4J. 1Z	Selpoint. Range: 0 – 50 l/b
5 2 1 43 22	P-Band
0.2.1.10.22	Range: 0–50 l/h
5.2.1.43	Control Parameters : if Parameter = Saturation
5.2.1.43.13	Setpoint:
	Range: 0–200%
5.2.1.43.23	P-Band:
	Range: 0–200%
5.2.1.43.3	<i>Reset time:</i> The reset time is the time till the step response of a single I-controller will reach the same value as it will be suddenly reached by a P-controller. Range: $0-9'000$ sec
5.2.1.43.4	<i>Derivative time:</i> The derivative time is the time till the ramp response of a single P-controller will reach the same value as it will be suddenly reached by a D-controller. Range: 0–9'000 sec
5.2.1.43.5	<i>Control timeout:</i> If a controller action (dosing intensity) is constantly over 90% during a defined period of time and the process value does not come closer to the setpoint, the dosing process will be stopped for safety reasons. Range: 0–720 min

5.3 Relay Contacts

5.3.1 Alarm Relay: The alarm relay is used as cumulative error indicator. Under normal operating conditions the contact is active.

The contact is inactive at:

- Power loss
- Detection of system faults like defective sensors or electronic parts
- High case temperature
- Process values out of programmed ranges.

Program alarm levels for the following parameters:

- Meas. Value
- Temperature
- Sample Flow (if a flow sensor is selected)
- Case Temperature high
- Case Temperature low

5.3.1.1 Alarm Oxygen

5.3.1.1.1 *Alarm High:* If the measured value rises above the alarm high value, the alarm relay is activated and E001, is displayed in the message list.

Range: 0.00 ppb-20.00 ppm

5.3.1.1.25 *Alarm Low:* If the measured value falls below the alarm low value, the alarm relay is activated and E002 is displayed in the message list.

Range: 0.00 ppb-20.00 ppm

- 5.3.1.1.35 *Hysteresis:* Within the hyst. range, the relay does not switch. This prevents damage of relays contacts when the measured value fluctuates around the alarm value. Range. 0.00 ppb-20.00 ppm
- 5.3.1.1.45 Delay: Duration, the activation of the alarm relay is retarded after the measuring value has risen above/fallen below the programmed alarm. Range: 0–28'800 Sec

- **5.3.1.2 Sample Flow:** Define at which sample flow a flow alarm should be issued.
- 5.3.1.2.1 *Flow Alarm:* Program if the alarm relay should be activated if there is a flow alarm. Choose between yes or no. The flow alarm will always be indicated in the display, pending error list, saved in the message list and the logger. Available values: Yes or no

NOTICE: Sufficient flow is essential for a correct measurement. We recommend to program yes.

- 5.3.1.2.2 *Alarm High:* If the measuring values rises above the programmed value E009 will be issued. Range: 12–50 l/h
- 5.3.1.2.32 *Alarm Low:* If the measuring values falls below the programmed value E010 will be issued. Range: 8–11 l/h
 - **5.3.1.3 Sample Temp.:** Define at which sample temperature an alarm should be issued.
- 5.3.1.3.1 *Alarm High:* If the measured value rises above the alarm high value, the alarm relay is activated and E007 is issued. Range: 30–100 °C
- 5.3.1.3.22 *Alarm Low:* If the measured value rises above the alarm high value, the alarm relay is activated and E008 is issued. Range: -10 to + 20 °C

5.3.1.4 Alarm Saturation

5.3.1.4.1 *Alarm High:* If the measured value rises above the alarm high value, the alarm relay is activated and E001, is displayed in the message list.

Range: 0.00-200 %

5.3.1.4.22 *Alarm Low:* If the measured value falls below the alarm low value, the alarm relay is activated and E002 is displayed in the message list.

Range: 0.00-200 %

- 5.3.1.4.32 *Hysteresis:* Within the hyst. range, the relay does not switch. This prevents damage of relays contacts when the measured value fluctuates around the alarm value. Range. 0.00–200 %
- 5.3.1.4.42 Delay: Duration, the activation of the alarm relay is retarded after the measuring value has risen above/fallen below the programmed alarm.
 Range: 0–28'800 Sec

5.3.1.5 Case Temp.

- 5.3.1.5.1 *Case Temp. high:* Set the alarm high value for temperature of electronics housing. If the value rises above the programmed value E013 is issued. Range: 30–75 °C
- 5.3.1.5.2 *Case Temp. low:* Set the alarm low value for temperature of electronics housing. If the value falls below the programmed value E014 is issued. Range: -10 to + 20 °C
- **5.3.2 and 5.3.3 Relay 1 and 2:** The function of relay contacts 1 or 2 are defined by the user

NOTICE: The navigation in the menu <Relay 1> and <Relay 2> is equal. For reason of simplicity only the menu numbers of Relay 1 are used in the following.

- 1 First select the functions as:
 - Limit upper/lower,
 - Control upwards/downwards,
 - Timer
 - Fieldbus
- 2 Then enter the necessary data depending on the selected function. The same values may also be entered in menu 4.2 Relay Contacts, p. 53
- 5.3.2.1 Function = Limit upper/lower:

When the relays are used as upper or lower limit switches, program the following:

- 5.3.2.20 Parameter: choose one of the following process values
 - Oxygen
 - Temperature
 - Sample Flow
 - Saturation
- 5.3.2.300 *Setpoint*: If the measured value rises above respectively falls below the set-point, the relay is activated.

Parameter	Range
Oxygen	0.00 ppb-20.00 ppm
Temperature	-30 to + 130 °C
Sample flow	0–50 l/h
Saturation	0–200 %

5.3.2.400 *Hysteresis:* within the hysteresis range, the relay does not switch. This prevents damage of relay contacts when the measured value fluctuates around the alarm value.

Parameter	Range
Oxygen	0.00 ppb-20.00 ppm
Temperature	0–100 °C
Sample flow	0–50 l/h
Saturation	0–200 %

5.3.2.50 *Delay:* Duration, the activation of the alarm relay is retarded after the measuring value has risen above/fallen below the programmed alarm.

Range. 0-600 Sec

5.3.2.1 Function = Control upwards/downwards

The relays may be used to drive control units such as solenoid valves, membrane dosing pumps or motor valves. When driving a motor valve both relays are needed, relay 1 to open and relay 2 to close the valve.

- 5.3.2.22 Parameter: choose one of the following process values
 - Oxygen
 - Temperature
 - Sample Flow
 - Saturation

5.3.2.32 Settings

Choose the respective actuator:

- Time proportional
- Frequency
- Motor valve

Actuator = Time proportional

Examples of metering devices that are driven time proportional are solenoid valves, peristaltic pumps.

Dosing is controlled by the operating time.

- 5.3.2.32.20 *Cycle time:* duration of one control cycle (on/off change). Range: 0–600 sec.
- 5.3.2.32.30 *Response time:* Minimal time the metering device needs to react. Range: 0–240 sec.

AMI INSPECTOR Oxygen Program List and Explanations

5.3.2.32.4	Control Parameters: Range for each Parameter same as 5.2.1.43, p. 58	
	Actuator = Frequency	
	Examples of metering devices that are pulse frequency driven are the classic membrane pumps with a potential free triggering input. Dosing is controlled by the repetition speed of dosing shots.	
5.3.2.32.21	<i>Pulse frequency:</i> Max. pulses per minute the device is able to respond to. Range: 20–300/min.	
5.3.2.32.31	Control Parameters: Range for each Parameter same as 5.2.1.43, p. 58	
	Actuator = Motor valve	
5.3.2.32.22	Dosing is controlled by the position of a motor driven mixing valve. <i>Run time:</i> Time needed to open a completely closed valve Range: 5–300 Sec.	
5.3.2.32.32	<i>Neutral zone:</i> Minimal response time in % of the runtime. If the requested dosing output is smaller than the response time, no change will take place. Range: $1-20$ %	
5.3.2.32.4	Control Parameters: Range for each Parameter same as 5.2.1.43, p. 58	
5.3.2.1	Function = Timer	
	The relay will be activated repetitively depending on the pro- grammed time scheme.	
5.3.2.24	Mode: Operating mode (interval, daily, weekly)	
5.3.2.24	Interval	
5.3.2.340	<i>Interval:</i> The interval can be programmed within a range of 1–1440 min.	
5.3.2.44	<i>Run Time</i> : Enter the time the relay stays active. Range: 5–32'400 Sec.	
5.3.2.54	<i>Delay</i> : during run time plus the delay time the signal and control outputs are held in the operating mode programmed below. Range: 0–6'000 Sec.	

- 5.3.2.6 *Signal Outputs*: Select operating mode of the signal output:
 - *Cont.:* Signal outputs continue to issue the measured value.
 - *Hold:* Signal outputs hold the last valid measured value. Measurement is interrupted. Errors, except fatal errors, are not issued.
 - *Off:* Signal outputs are switched off (set to 0 or 4 mA). Errors, except fatal errors, are not issued.
- 5.3.2.7 *Output/Control*: Select operating mode of the controller output:
 - Cont.: Controller continues normally.
 - Hold: Controller continues based on the last valid value.
 - Off: Controller is switched off.
- 5.3.2.24 daily

The relay contact can be activated daily, at any time of a day.

5.3.2.341 *Start time*: to set the start time proceed as follows:

- 1 Press [Enter], to set the hours.
- 2 Set the hour with the [] or [] keys.
- **3** Press [Enter], to set the minutes.
- 4 Set the minutes with the [] or [] keys.
- **5** Press [Enter], to set the seconds.
- 6 Set the seconds with the [] or [] keys.

Range: 00:00:00-23:59:59

- 5.3.2.44 Run Time: see Interval
- 5.3.2.54 *Delay*: see Interval
- 5.3.2.6 Signal Outputs: see Interval
- 5.3.2.7 Output/Control: see Interval
- 5.3.2.24 weekly

The relay contact can be activated at one or several days, of a week. The daily starting time is valid for all days.

5.3.2.342	Calendar:
5.3.2.342.1	<i>Start time</i> : The programmed start time is valid for each of the pro- grammed days. To set the start time see 5.3.2.341, p. 64.
	Range: 00:00:00-23:59:59
5.3.2.342.2	Monday: Possible settings, on or off

to

- 5.3.2.342.8 Sunday: Possible settings, on or off
 - 5.3.2.44 Run Time: see Interval
 - 5.3.2.54 Delay: see Interval
 - 5.3.2.6 Signal Outputs: see Interval
 - 5.3.2.7 Output/Control: see Interval
 - 5.3.2.1 Function = Fieldbus

The relay will be switched via the Profibus input. No further parameters are needed.

- **5.3.4 Input:** The functions of the relays and signal outputs can be defined depending on the position of the input contact, i.e. no function, closed or open.
- 5.3.4.1 *Active:* Define when the input should be active:

No:	Input is never active.
When closed	Input is active if the input relay is closed
When open:	Input is active if the input relay is open

5.3.4.2 *Signal Outputs:* Select the operation mode of the signal outputs when the relay is active:

Cont.:	Signal outputs continue to issue the measured value.
Hold:	Signal outputs issue the last valid measured value.
	Measurement is interrupted. Errors, except fatal errors, are not issued.
Off:	Set to 0 or 4 mA respectively. Errors, except fatal errors, are not issued.

5.3.4.3 Output/Contro		<i>l:</i> (relay or signal output):
	Cont.: Hold: Off:	Controller continues normally. Controller continues on the last valid value. Controller is switched off.
5.3.4.4	Fault:	
	No:	No message is issued in pending error list and the alarm relay does not close when input is active.
	Yes:	Message E024 is issued and stored in the mes- sage list. The Alarm relay closes when input is active.
5.3.4.5	<i>Delay:</i> Time w	hich the instrument waits, after the input is deactive

5.3.4.5 *Delay:* Time which the instrument waits, after the input is deactivated, before returning to normal operation. Range: 0–6'000 Sec

5.4 Miscellaneous

- 5.4.1 *Language:* Set the desired language. Available settings: German/English/French/Spanish
- 5.4.2 *Set defaults:* Reset the instrument to factory default values in three different ways:
 - **Calibration:** Sets calibration values back to default. All other values are kept in memory.
 - In parts: Communication parameters are kept in memory. All other values are set back to default values.
 - **Completely:** Sets back all values including communication parameters.
- 5.4.3 *Load Firmware:* Firmware updates should be done by instructed service personnel only.
- 5.4.4 Password: Select a password different from 0000 to prevent unauthorized access to the menus "Messages", "Maintenance", "Operation" and "Installation".
 Each menu may be protected by a *different* password.

If you forgot the passwords, contact the closest SWAN representative.

5.4.5 *Sample ID:* Identify the process value with any meaningful text, such as KKS number.

5.5 Interface

Select one of the following communication protocols. Depending on your selection, different parameters must be defined.

5.5.1	Protocol: Profibus	
5.5.20	Device address:	Range: 0–126
5.5.30	ID-Nr.:	Range: Analyzer; Manufacturer; Multivariable
5.5.40	Local operation:	Range: Enabled, Disabled
5.5.1	Protocol: Modbus	RTU
5.5.21	Device address:	Range: 0–126
5.5.31	Baud Rate:	Range: 1200–115200 Baud
5.5.41	Parity:	Range: none, even, odd
5.5.1	Protocol: USB-Stic	k:

Only visible if an USB interface is installed. No further settings are possible.

10. Default Values

Operation:

Sensors:	Filter Time Const.: Hold after Cal.:	
Alarm Relay		same as in Installation
Relay 1/2		same as in Installation
Input		same as in Installation
Logger:	Logger Interval: Clear Logger:	30 Minutes
Installation:	55	
Sensors	Miscellaneous: Flow:	
	Offset:	0.0 ppb
	Quality Assurance; Level:	0: Off
Signal Output	Parameter:	oxygen
	Current loop:	
	Scaling: Range low:	0.00 ppb
	Scaling: Range high:	
Alarm Relay:	Alarm oxygen; Alarm high:	
,	Alarm oxygen; Alarm low:	0.00 ppb
	Alarm oxygen; Hysteresis:	
	Alarm oxygen; Delay:	5 Sec
	It Flow = Q-Flow Sample Flow Flow Alarm:	
	Sample Flow, Flow Alarm high:	
	Sample Flow, Alarm low:	
	Sample Temp., Alarm High:	
	Sample Temp., Alarm Low:	0°C
	Alarm Saturation; Alarm low	
	Alarm Saturation: Hysteresis	
	Alarm Saturation; Delay	5 Sec
	Case temp. high:	65 °C
	Case temp. low:	O°C
Relay 1	Function:	limit upper
	Parameter:	oxygen
	Hysteresis [.]	ייייייייייייייייייייייייייייייייייייי
	Delay:	

Relay 2	Function:	limit upper
	Parameter:	Temperature
	Setpoint:	50 °C
	Hysteresis:	1.0 °C
	Delay:	30 Sec
	If Function = Control upw. or dnw:	
	Parameter:	Meas. Value
	Settings: Actuator:	Frequency
	Settings: Pulse Frequency:	120/min.
	Settings: Control Parameters: Setpoint:	10.00 ppm
	Settings: Control Parameters: P-band:	100 ppb
	Settings: Control Parameters: Reset time:	0 Sec
	Settings: Control Parameters: Derivative Time:	0 Sec
	Settings: Control Parameters: Control Timeout:	0 Min.
	Settings: Act. Time prop.: Cycle time:	60 s
	Settings: Act. Time prop.: Response time:	10 s
	Settings: Act. Motor valve: Run time:	
	Settings: Act. Motor valve: Neutral zone:	5%
	If Function = Timer:	
	Mode:	Interval
	Interval:	1 min
	Mode:	daily
	Start time:	00.00.00
	Mode:	weekly
	Calendar; Start time:	00.00.00
	Calendar; Monday to Sunday:	Off
	Run time:	10 Sec
	Delay:	5 Sec
	Signal output:	cont
	Output/Control:	cont
Input:	Active	when closed
	Signal Outputs	hold
	Output/Control	off
	Fault	no
	Delay	10 Sec
AMI INSPECTOR Oxygen

Miscellaneous	Language:	English
	Set default:	no
	Load firmware:	no
	Password:	for all modes 0000
	Sample ID:	
Interface	Protocol:	USB Stick

11. Index

Α

С

Calendar	
Changing values 27	
Charging 19	
Clean Flow Cell and Swansensor Ox	y-
trace G	

D

Default Values 69

Е

Electrolyte exchange	29
Establish Sample Flow	23
external devices	19

F

Fluidics	•••	•••	•	•	•	•	·	·	•	9
I										
Input										21
Instrument S	Setu	ıp.						13	,	38

L

Longer Stop of Operation . . 41

Ρ

Power ON - OFF 19 Power Supply 11, 21

R

Relay Contacts 1 and 2 . . . 22

S

Sample requirements	11
shut-down	19
Signal Outputs	22
Software	26

Т

Temperature compensation. . 8 Terminals 18, 21–22

W

Wire 17	Wire		•						•					•	•	17	7
---------	------	--	---	--	--	--	--	--	---	--	--	--	--	---	---	----	---

Ζ

12. Notes

AMI INSPECTOR Oxygen

SWAN

is represented worldwide by subsidiary companies and distributors.

cooperates with independent representatives all over the world.

SWAN Products

Analytical Instruments for:

- High Purity Water
- Feedwater, Steam and Condensate
- Potable Water
- Pool and Sanitary Water
- Cooling Water
- Waste Water and Effluents

Made in Switzerland

